Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 648
Filter
1.
Neural Regen Res ; 20(5): 1467-1482, 2025 May 01.
Article in English | MEDLINE | ID: mdl-39075913

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202505000-00029/figure1/v/2024-07-28T173839Z/r/image-tiff Schwann cell transplantation is considered one of the most promising cell-based therapy to repair injured spinal cord due to its unique growth-promoting and myelin-forming properties. A the Food and Drug Administration-approved Phase I clinical trial has been conducted to evaluate the safety of transplanted human autologous Schwann cells to treat patients with spinal cord injury. A major challenge for Schwann cell transplantation is that grafted Schwann cells are confined within the lesion cavity, and they do not migrate into the host environment due to the inhibitory barrier formed by injury-induced glial scar, thus limiting axonal reentry into the host spinal cord. Here we introduce a combinatorial strategy by suppressing the inhibitory extracellular environment with injection of lentivirus-mediated transfection of chondroitinase ABC gene at the rostral and caudal borders of the lesion site and simultaneously leveraging the repair capacity of transplanted Schwann cells in adult rats following a mid-thoracic contusive spinal cord injury. We report that when the glial scar was degraded by chondroitinase ABC at the rostral and caudal lesion borders, Schwann cells migrated for considerable distances in both rostral and caudal directions. Such Schwann cell migration led to enhanced axonal regrowth, including the serotonergic and dopaminergic axons originating from supraspinal regions, and promoted recovery of locomotor and urinary bladder functions. Importantly, the Schwann cell survival and axonal regrowth persisted up to 6 months after the injury, even when treatment was delayed for 3 months to mimic chronic spinal cord injury. These findings collectively show promising evidence for a combinatorial strategy with chondroitinase ABC and Schwann cells in promoting remodeling and recovery of function following spinal cord injury.

2.
Chemosphere ; : 143252, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39236918

ABSTRACT

Ionic liquids (ILs) have found diverse applications in research and industry. Biocompatible ILs, a subset considered less toxic than traditional ILs, have expanded their applications into biomedical fields. However, there is limited understanding of the toxicity profiles, safe concentrations, and underlying factors driving their toxicity. In this study, we investigated the cytotoxicity of 13 choline-based ILs using four different cell lines: Human dermal fibroblasts (HDF), epidermoid carcinoma cells (A431), cervical cancer cells (HeLa), and gastric cancer cells (AGS). Additionally, we explored the haemolytic activity of these ILs. Our findings showed that the cytotoxic and haemolytic activities of ILs can be attributed to the hydrophobicity of the anions and the pH of the IL solutions. Furthermore, utilising quartz crystal microbalance with dissipation (QCM-D) technique, we delved into the interaction of selected ILs, including choline acetate [Cho][Ac] and choline geranate [Cho][Ge], with model cell membranes composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). The QCM-D data showed that ILs with higher toxicities exhibited more pronounced interactions with membranes. Increased variations in frequency and dissipation reflected substantial changes in membrane fluidity and mass following the addition of the more toxic ILs. Furthermore, total internal reflection fluorescence microscopy study revealed that [Cho][Ac] could cause lipid rearrangements and pore formation in the membrane, while [Cho][Ge] disrupted the bilayer packing. This study advances our understanding of the cellular toxicities associated with choline-based ILs and provides valuable insights into their mechanisms of action concerning IL-membrane interactions. These findings have significant implications for the safe and informed utilisation of biocompatible ILs in the realm of drug delivery and biotechnology.

3.
Environ Sci Ecotechnol ; 22: 100471, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39220680

ABSTRACT

Microplastics and phthalates are prevalent and emerging pollutants that pose a potential impact on human health. Previous studies suggest that both microplastics and phthalates can adversely affect the reproductive systems of humans and mammals. However, the combined impact of these pollutants on the female reproductive system remains unclear. Here we show the impacts of exposure to polystyrene microplastics (PS-MPs) and di-2-ethylhexyl phthalate (DEHP) on female Sprague-Dawley rats' reproductive systems. We find that co-exposure to PS-MPs and DEHP results in a marked increase in cystic and atretic follicles, oxidative stress, fibrosis, and dysregulation of serum sex hormone homeostasis in the ovaries of the rats. Proteomic analysis identified differentially expressed proteins that were predominantly enriched in signaling pathways related to fatty acid metabolism and tight junctions, regulated by transforming growth factor ß1 (TGF-ß1). We further confirm that co-exposure to DEHP and PS-MPs activates the TGF-ß1/Smad3 signaling pathway, and inhibiting this pathway alleviates oxidative stress, hormonal dysregulation, and ovarian fibrosis. These results indicate that exposure to the combination of microplastics and phthalates leads to a significant increase in atretic follicles and may increase the risk of polycystic ovary syndrome (PCOS). Our study provides new insights into the reproductive toxicity effects of microplastics and DEHP exposure on female mammals, highlighting the potential link between environmental pollutants and the occurrence of PCOS. These findings highlight the need for comprehensive assessments of the reproductive health risks posed by microplastic pollution to women and contribute to the scientific basis for evaluating such risks.

4.
Aging Clin Exp Res ; 36(1): 165, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120630

ABSTRACT

BACKGROUND: We aimed to explore the association of sleep duration with depressive symptoms among rural-dwelling older adults in China, and to estimate the impact of substituting sleep with sedentary behavior (SB) and physical activity (PA) on the association with depressive symptoms. METHODS: This population-based cross-sectional study included 2001 rural-dwelling older adults (age ≥ 60 years, 59.2% female). Sleep duration was assessed using the Pittsburgh Sleep Quality Index. We used accelerometers to assess SB and PA, and the 15-item Geriatric Depression Scale to assess depressive symptoms. Data were analyzed using restricted cubic splines, compositional logistic regression, and isotemporal substitution models. RESULTS: Restricted cubic spline curves showed a U-shaped association between daily sleep duration and the likelihood of depressive symptoms (P-nonlinear < 0.001). Among older adults with sleep duration < 7 h/day, reallocating 60 min/day spent on SB and PA to sleep were associated with multivariable-adjusted odds ratio (OR) of 0.81 (95% confidence interval [CI] = 0.78-0.84) and 0.79 (0.76-0.82), respectively, for depressive symptoms. Among older adults with sleep duration ≥ 7 h/day, reallocating 60 min/day spent in sleep to SB and PA, and reallocating 60 min/day spent on SB to PA were associated with multivariable-adjusted OR of 0.78 (0.74-0.84), 0.73 (0.69-0.78), and 0.94 (0.92-0.96), respectively, for depressive symptoms. CONCLUSIONS: Our study reveals a U-shaped association of sleep duration with depressive symptoms in rural older adults and further shows that replacing SB and PA with sleep or vice versa is associated with reduced likelihoods of depressive symptoms depending on sleep duration.


Subject(s)
Depression , Exercise , Rural Population , Sedentary Behavior , Sleep , Humans , Female , Male , Aged , Depression/epidemiology , Cross-Sectional Studies , Exercise/physiology , Middle Aged , Sleep/physiology , China/epidemiology , Aged, 80 and over , Data Analysis
5.
J Cell Physiol ; : e31364, 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39129208

ABSTRACT

High mobility group protein B1 (HMGB1) acts as a pathogenic inflammatory response to mediate ranges of conditions such as epilepsy, septic shock, ischemia, traumatic brain injury, Parkinson's disease, Alzheimer's disease and mass spectrometry. HMGB1 promotes inflammation during sterile and infectious damage and plays a crucial role in disease development. Mobilization from the nucleus to the cytoplasm is the first important step in the release of HMGB1 from activated immune cells. Here, we demonstrated that Sirtuin 2 (SIRT2) physically interacts with and deacetylates HMGB1 at 43 lysine residue at nuclear localization signal locations, strengthening its interaction with HMGB1 and causing HMGB1 to be localized in the cytoplasm. These discoveries are the first to shed light on the SIRT2 nucleoplasmic shuttle, which influences HMGB1 and its degradation, hence revealing novel therapeutic targets and avenues for neuroinflammation treatment.

6.
J Alzheimers Dis ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39177601

ABSTRACT

Background: Little is known about the associations of hearing loss, hippocampal volume, and motoric cognitive risk syndrome (MCR) in older adults. Objective: We aimed to investigate the associations of hearing loss with MCR and hippocampal volume; and the interaction of hearing loss with hippocampal volume on MCR. Methods: This population-based cross-sectional study included 2,540 dementia-free participants (age≥60 years; 56.5% women) in the baseline examination of the Multimodal Interventions to Delay Dementia and Disability in rural China. Data were collected through face-to-face interviews, clinical examination, and laboratory tests. Hearing function was assessed using pure tone audiometry test. In the subsample (n = 661), hippocampal volume was assessed on structural magnetic resonance images. Data were analyzed with logistic regression models. Results: In the total sample, MCR was diagnosed in 246 persons (9.7%). High-frequency hearing loss was significantly associated with an increased likelihood of MCR and slow gait. In the subsample, the restricted cubic spline plots indicated an inverted U-shaped nonlinear relationship between high-frequency hearing performance and hippocampal volume. Moreover, greater hippocampal volume was significantly associated with a deduced likelihood of MCR and subjective cognitive decline (SCD). In addition, there were statistical interactions of high-frequency hearing loss with hippocampal volume on MCR and slow gait (p for interaction < 0.05), such that the associations were statistically significant only among participants free of high-frequency hearing loss. Conclusions: High-frequency hearing loss was associated with an increased likelihood of MCR in older adults. The hippocampus might play a part in the relationship of high-frequency hearing loss and MCR.

7.
Sci Total Environ ; 951: 175345, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39117204

ABSTRACT

The Microcystis blooms have caused serious damage to aquatic ecosystems. Microspheres containing allelochemicals with sustained-release properties have the potential to function as a cost-effective and environmentally friendly algaecide against M. aeruginosa. In the current investigation, we successfully optimized the synthesis of allelochemicals sustained-release microspheres regulated by carbon material (CM-AC@SM), which demonstrated a high embedding rate (90.17 %) and loading rate (0.65 %), with an accumulative release rate of 53.27 % on day 30. To investigate the sustained-release mechanism of CM-AC@SM, the sustained-release process of allelochemicals was determined using the Folin-Phenol method and the immersion behavior of the CM-AC@SM was characterized through SEM and XPS. Results showed that allelochemicals were released in the delayed-dissolution mode. In addition, to elucidate the synergistic mechanism of CM-AC@SM towards the inhibition of M. aeruginosa, this study comprehensively assessed the effects of allelochemicals, carbon material and CM-AC@SM on the morphology, antioxidant system activity and photosynthetic activity of M. aeruginosa. The findings indicated that allelochemicals and carbon material induced intracellular protein and nucleic acid leakage by increasing cell membrane permeability, disrupted the extracellular and intracellular morphology of algae, triggered peroxidative damage and restrained antioxidant system activity by stimulating the generation of reactive oxygen species. Simultaneously, the activity of photosystem II was inhibited by allelochemicals and carbon material, substantiated by the reduction in Fv/Fo and Fv/Fm ratios. Hence, CM-AC@SM shows promise in inhibiting M. aeruginosa, offering an efficient approach for the future large-scale control of harmful algal blooms (HABs).

8.
Curr Biol ; 34(16): 3792-3803.e5, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39096908

ABSTRACT

Melatonin (MLT) is an important circadian signal for sleep regulation, but the neural circuitries underlying the sleep-promoting effects of MLT are poorly understood. The paraventricular thalamus (PVT) is a critical thalamic area for wakefulness control and expresses MLT receptors, raising a possibility that PVT neurons may mediate the sleep-promoting effects of MLT. Here, we found that MLT receptors were densely expressed on PVT neurons and exhibited circadian-dependent variations in C3H/HeJ mice. Application of exogenous MLT decreased the excitability of PVT neurons, resulting in hyperpolarization of membrane potential and reduction of action potential firing. MLT also inhibited the spontaneous activity of PVT neurons at both population and single-neuron levels in freely behaving mice. Furthermore, pharmacological manipulations revealed that local infusion of exogeneous MLT into the PVT promoted non-rapid eye movement (NREM) sleep and increased NREM sleep duration, whereas MLT receptor antagonists decreased NREM sleep. Moreover, we found that selectively knocking down endogenous MLT receptors in the PVT decreased NREM sleep and correspondingly increased wakefulness, with particular changes shortly after the onset of the dark or light phase. Taken together, these results demonstrate that PVT is an important target of MLT for promoting NREM sleep.


Subject(s)
Melatonin , Mice, Inbred C3H , Midline Thalamic Nuclei , Animals , Mice , Midline Thalamic Nuclei/physiology , Midline Thalamic Nuclei/drug effects , Melatonin/pharmacology , Melatonin/metabolism , Wakefulness/physiology , Wakefulness/drug effects , Male , Receptors, Melatonin/metabolism , Receptors, Melatonin/genetics , Sleep/physiology , Sleep/drug effects , Circadian Rhythm/drug effects , Circadian Rhythm/physiology , Neurons/physiology , Neurons/drug effects , Neurons/metabolism , Sleep, Slow-Wave/physiology
9.
Cancer Epidemiol ; 92: 102625, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39094300

ABSTRACT

BACKGROUND: Patients with oral cancer usually experience disfigurement and dysfunction which are shared risk factors of suicide. The aim of the study was to comprehensively assess the characteristics of suicide and risk factors for suicide in patients with oral cancer. METHODS: Surveillance, Epidemiology, and End Results database was used to acquire information of patients with common malignant tumors including oral cancer from 1975 to 2020. The aim was to explore the incidence of suicide, and timing of suicide among patients with oral cancer. A Fine-Gray competing risks regression model was employed to analyze risk factors associated with suicide among patients with various demographic and tumor characteristics. RESULTS: Totally, 7685 patients with different malignant tumors committed suicide. Among them, 203 patients with oral cancer died due to suicide, presenting a suicide rate of 54.5/100,000 person-years, which was almost 3.5 times that of the US general population and 1.5 times that of the overall US patients with cancer in our study. Approximately 18 %, 40 %, and 55 % of suicides occurred in first year, first 3 years, and first 5 years after diagnosis. Being male, White race, and having a single primary tumor might be regarded as the risk factors for suicide. CONCLUSION: As oral cavity is closely associated with appearance, pronunciation and ingestion, patients with oral cancer have a significant high risk of suicide. Tremendous attention needs to be paid to patients with oral cancer particularly those exhibiting characteristics associated with a high risk of suicide.

10.
J Pharmacol Sci ; 156(2): 57-68, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39179335

ABSTRACT

Metformin is an important antidiabetic drug that has the potential to reduce skeletal muscle atrophy and promote the differentiation of muscle cells. However, the exact molecular mechanism underlying these functions remains unclear. Previous studies revealed that the transcription factor zinc finger E-box-binding homeobox 1 (ZEB1), which participates in tumor progression, inhibits muscle atrophy. Therefore, we hypothesized that the protective effect of metformin might be related to ZEB1. We investigated the positive effect of metformin on IL-1ß-induced skeletal muscle atrophy by regulating ZEB1 in vitro and in vivo. Compared with the normal cell differentiation group, the metformin-treated group presented increased myotube diameters and reduced expression levels of atrophy-marker proteins. Moreover, muscle cell differentiation was hindered, when we artificially interfered with ZEB1 expression in mouse skeletal myoblast (C2C12) cells via ZEB1-specific small interfering RNA (si-ZEB1). In response to inflammatory stimulation, metformin treatment increased the expression levels of ZEB1 and three differentiation proteins, MHC, MyoD, and myogenin, whereas si-ZEB1 partially counteracted these effects. Moreover, marked atrophy was induced in a mouse model via the administration of lipopolysaccharide (LPS) to the skeletal muscles of the lower limbs. Over a 4-week period of intragastric administration, metformin treatment ameliorated muscle atrophy and increased the expression levels of ZEB1. Metformin treatment partially alleviated muscle atrophy and stimulated differentiation. Overall, our findings may provide a better understanding of the mechanism underlying the effects of metformin treatment on skeletal muscle atrophy and suggest the potential of metformin as a therapeutic drug.


Subject(s)
Cell Differentiation , Hypoglycemic Agents , Metformin , Muscle, Skeletal , Muscular Atrophy , Zinc Finger E-box-Binding Homeobox 1 , Metformin/pharmacology , Animals , Zinc Finger E-box-Binding Homeobox 1/metabolism , Zinc Finger E-box-Binding Homeobox 1/genetics , Muscular Atrophy/prevention & control , Muscular Atrophy/drug therapy , Muscular Atrophy/metabolism , Muscular Atrophy/etiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Mice , Cell Differentiation/drug effects , Hypoglycemic Agents/pharmacology , Male , MyoD Protein/metabolism , MyoD Protein/genetics , Interleukin-1beta/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Myoblasts, Skeletal/metabolism , Myoblasts, Skeletal/drug effects , Myoblasts, Skeletal/pathology , Lipopolysaccharides , Myogenin/metabolism , Myogenin/genetics , Cell Line
11.
Oral Dis ; 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39155514

ABSTRACT

OBJECTIVES: This study aimed to investigate the expression and biological significance of Semenogelin 1 (SEMG1), a member of the cancer-testis antigen family, in oral squamous cell carcinoma (OSCC). Further, we explored its potential association with metabolism-related molecules. METHODS: SEMG1 expression levels in OSCC were determined through immunohistochemistry, flow cytometry, and Western blot analyses. To decipher the biological implications of SEMG1 in OSCC, the CAL27 OSCC cell line was either stably overexpressed with SEMG1 or subjected to SEMG1-shRNA knockdown. The relationship between clinicopathological parameters and SEMG1 expression in OSCC patients was also assessed. RESULTS: SEMG1 was found to be overexpressed in OSCC, though its expression was not influenced by the pathological grade. The fluorescent dihydroethidium assay indicated that SEMG1 augmented reactive oxygen species production. The mitochondrial membrane potential assay suggested a significant upregulation of mitochondrial membrane potential by SEMG1. Cell cycle assessments highlighted that SEMG1 overexpression led to a notable rise in cells entering the S-phase. Additionally, a strong correlation between SEMG1 expression and both ENO1 and PKM2 expression in OSCC was observed. CONCLUSIONS: The findings underscore the elevated expression of SEMG1 in OSCC and its contributory role in the tumorigenesis of OSCC patients.

12.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-39129674

ABSTRACT

Understanding the ancestral transition from anaerobic to aerobic lifestyles is essential for comprehending life's early evolution. However, the biological adaptations occurring during this crucial transition remain largely unexplored. Thiamine is an important cofactor involved in central carbon metabolism and aerobic respiration. Here, we explored the phylogenetic and global distribution of thiamine-auxotrophic and thiamine-prototrophic bacteria based on the thiamine biosynthetic pathway in 154 838 bacterial genomes. We observed strong coincidences of the origin of thiamine-synthetic bacteria with the "Great Oxygenation Event," indicating that thiamine biosynthesis in bacteria emerged as an adaptation to aerobic respiration. Furthermore, we demonstrated that thiamine-mediated metabolic interactions are fundamental factors influencing the assembly and diversity of bacterial communities by a global survey across 4245 soil samples. Through our newly established stable isotope probing-metabolic modeling method, we uncovered the active utilization of thiamine-mediated metabolic interactions by bacterial communities in response to changing environments, thus revealing an environmental adaptation strategy employed by bacteria at the community level. Our study demonstrates the widespread thiamine-mediated metabolic interactions in bacterial communities and their crucial roles in setting the stage for an evolutionary transition from anaerobic to aerobic lifestyles and subsequent environmental adaptation. These findings provide new insights into early bacterial evolution and their subsequent growth and adaptations to environments.


Subject(s)
Bacteria , Phylogeny , Soil Microbiology , Thiamine , Thiamine/biosynthesis , Thiamine/metabolism , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Adaptation, Physiological , Aerobiosis , Biosynthetic Pathways , Genome, Bacterial , Anaerobiosis
13.
J Agric Food Chem ; 72(34): 18840-18850, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39140307

ABSTRACT

Cyromazine, a triazine insecticide, raises food safety concerns due to residues in vegetables like cowpeas. Microbial metabolism is key for pesticide elimination, but bacteria efficient in cyromazine degradation are limited, with uncharacterized enzymes. This study isolated a highly efficient cyromazine-degrading bacterium, Mycobacterium sp. M15, from a cowpea field. M15 utilized cyromazine as the sole carbon source for its growth and completely degraded 0.5 mM cyromazine within 24 h. The degradation pathway involved hydrolyzing cyromazine to N-cyclopropylammeline and further to N-cyclopropylammelide, with amino groups removed sequentially. The cyclopropylamine group in N-cyclopropionamide continued to hydrolyze to cyanuric acid. A protein, CriA, identified as an aminohydrolase in M15, degraded cyromazine to N-cyclopropylammeline. Using CriA reduced cyromazine residues on cowpea surfaces and completely degraded them in immersion solutions. These findings offer insights into cyromazine's microbial degradation mechanism and highlight the potential of cyromazine-degrading enzymes in enhancing food safety.


Subject(s)
Bacterial Proteins , Biodegradation, Environmental , Mycobacterium , Triazines , Vigna , Triazines/metabolism , Triazines/chemistry , Vigna/metabolism , Vigna/chemistry , Mycobacterium/metabolism , Mycobacterium/enzymology , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Insecticides/metabolism , Insecticides/chemistry
14.
Biomolecules ; 14(8)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39199299

ABSTRACT

PRF1 (perforin 1) is a key cytotoxic molecule that plays a crucial role in the killing function of natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). Recent studies have focused on PRF1's role in cancer development, progression, and prognosis. Studies have shown that aberrant PRF1 expression has a significant role to play in cancer development and progression. In some cancers, high expression of the PRF1 gene is associated with a better prognosis for patients, possibly because it helps enhance the body's immune response to tumors. However, some studies have also shown that the absence of PRF1 may make it easier for tumors to evade the body's immune surveillance, thus affecting patient survival. Furthermore, recent studies have explored therapeutic strategies based on PRF1, such as enhancing the ability of immune cells to kill cancer cells by boosting PRF1 activity. In addition, they have improved the efficacy of immunotherapy by modulating its expression to enhance the effectiveness of the treatment. Based on these findings, PRF1 may be a valuable biomarker both for the treatment of cancer and for its prognosis in the future. To conclude, PRF1 has an important biological function and has clinical potential for the treatment of cancer, which indicates that it deserves more research and development in the future.


Subject(s)
Neoplasms , Perforin , Humans , Perforin/metabolism , Perforin/genetics , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/genetics , Neoplasms/metabolism , Immunotherapy , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Animals , Prognosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , T-Lymphocytes, Cytotoxic/immunology , Gene Expression Regulation, Neoplastic
15.
J Dent ; 149: 105278, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39111536

ABSTRACT

OBJECTIVES: Dental caries result from a microbial imbalance in the oral cavity. Probiotics ecologically modulate the oral microflora to prevent caries. This study evaluated the anti-cariogenic effects of two Lacticaseibacillus rhamnosus strains in vitro and in vivo to provide a more theoretical basis for its clinical applications in caries prevention. METHODS: In the study, cariogenic biofilms were grown with L. rhamnosus (LGG) or L. rhamnosus ATCC 7469 and analyzed. Quantitative real-time PCR (qPCR), Scanning Electron Microscope (SEM), and Confocal laser scanning microscope (CLSM) were used to detect the changes in the composition and architectures; cariogenic activity was measured by the lactic acid production and Transverse Microradiography (TMR). The effects of LGG on the 12 Sprague-Dawley rat caries model were assessed using Keyes scores and micro-CT analysis. Oral microbiome changes were evaluated through 16S rRNA gene high-throughput sequencing. RESULTS: L. rhamnosus can reduce cariogenic bacteria in biofilm by 14.7 % to 48.9 %, with LGG exhibiting more potent inhibitory effects. Both strains of L. rhamnosus can adhere to the surface of biofilms, reduce the extracellular polysaccharides (EPS) matrix, and loosen the biofilm structure. L. rhamnosus inhibited cariogenic activity by reducing the lactic acid production in biofilms. The bovine enamel blocks presented lower mineral loss values and lesion depth values in the group Core+L.rh and Core+LGG. LGG-ingested rats had significantly lower levels of moderate dentin lesions and higher mineral density than the control group. The 16 s rRNA gene sequencing revealed that LGG regulated the beta diversity of the oral microbial community in the rat dental caries model. CONCLUSIONS: This study revealed the promising potential of L. rhamnosus, especially the LGG strain, in the ecological prevention of dental caries. CLINICAL SIGNIFICANCE: Probiotics may provide a strategy for preventing caries by regulating the oral microecological balance. The study revealed the promising anti-caries potential of the LGG probiotic strain in vivo and in vitro. It is expected that LGG could be used as an oral probiotic for the clinical prevention and treatment of caries.


Subject(s)
Biofilms , Dental Caries , Disease Models, Animal , Lacticaseibacillus rhamnosus , Probiotics , Rats, Sprague-Dawley , Animals , Dental Caries/microbiology , Dental Caries/prevention & control , Biofilms/drug effects , Probiotics/therapeutic use , Rats , Lactic Acid/metabolism , RNA, Ribosomal, 16S , Microscopy, Electron, Scanning , X-Ray Microtomography , Dental Enamel , Real-Time Polymerase Chain Reaction , Microbiota , Mouth/microbiology , Microscopy, Confocal , Microradiography , Male
16.
J Dent ; 149: 105304, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39159741

ABSTRACT

OBJECTIVES: To determine whether tooth loss affects all-cause and cause-specific mortality in a nationally representative sample of adults with diabetes mellitus (DM) in the United States. METHODS: This prospective cohort study involved 8207 participants aged 30 years or older at baseline, all diagnosed with diabetes mellitus and enrolled in the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2018. Tooth loss was stratified into 28 teeth (complete), 20-27 teeth (tooth loss), 9-19 teeth (lacking functional), 1-8 teeth (severe tooth loss) and edentulism. To estimate hazard ratios (HRs) and 95 % confidence intervals (CIs) for all-cause and specific-cause mortality in diabetes mellitus participants according to tooth loss, multivariate cox proportional hazards regression models were used. Relationships between mortality and quartiles of mean tooth loss levels were analyzed, with the lowest quartile as the baseline for comparisons. RESULTS: During a median of 6.92 years of follow-up, 2317 deaths were documented. After multivariate adjustments, higher tooth loss levels were significantly and non-linearly associated with higher risks of all-cause, CVD-related and DM-related mortality among participants with DM. When compared with the reference group of mean tooth loss levels, the highest quartile showed significantly increased risks: all-cause mortality (HR, 2.11; 95 % CI, 1.53-2.91, P-trend < 0.001), CVD-related mortality (HR, 3.24, 95 % CI, 1.54-6.85, P-trend < 0.001) and DM-related mortality (HR, 2.78, 95 % CI, 1.15-6.68, P-trend < 0.001). CONCLUSIONS: Tooth loss is associated with an increased risk of all-cause, CVD-related and diabetes mellitus mortality among adults with diabetes mellitus in the US. CLINICAL SIGNIFICANCE: This study presents evidence for physicians and dentists that higher tooth loss was significantly associated with increased risk of all-cause, CVD-related and diabetes mellitus mortality in a dose-response manner among adults with diabetes mellitus. Therefore, assessment of survival in individuals with diabetes mellitus could pay attention to the tooth loss.


Subject(s)
Cause of Death , Diabetes Mellitus , Nutrition Surveys , Tooth Loss , Humans , Tooth Loss/complications , Male , Female , United States/epidemiology , Middle Aged , Prospective Studies , Adult , Diabetes Mellitus/mortality , Risk Factors , Aged , Proportional Hazards Models , Cardiovascular Diseases/mortality , Cardiovascular Diseases/complications , Diabetes Complications/complications
17.
World J Diabetes ; 15(6): 1091-1110, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38983811

ABSTRACT

Disorders in energy homeostasis can lead to various metabolic diseases, particularly obesity. The obesity epidemic has led to an increased incidence of obesity-related nephropathy (ORN), a distinct entity characterized by proteinuria, glomerulomegaly, progressive glomerulosclerosis, and renal function decline. Obesity and its associated renal damage are common in clinical practice, and their incidence is increasing and attracting great attention. There is a great need to identify safe and effective therapeutic modalities, and therapeutics using chemical compounds and natural products are receiving increasing attention. However, the summary is lacking about the specific effects and mechanisms of action of compounds in the treatment of ORN. In this review, we summarize the important clinical features and compound treatment strategies for obesity and obesity-induced kidney injury. We also summarize the pathologic and clinical features of ORN as well as its pathogenesis and potential therapeutics targeting renal inflammation, oxidative stress, insulin resistance, fibrosis, kidney lipid accumulation, and dysregulated autophagy. In addition, detailed information on natural and synthetic compounds used for the treatment of obesity-related kidney disease is summarized. The synthesis of detailed information aims to contribute to a deeper understanding of the clinical treatment modalities for obesity-related kidney diseases, fostering the anticipation of novel insights in this domain.

18.
Oncoimmunology ; 13(1): 2373526, 2024.
Article in English | MEDLINE | ID: mdl-38948931

ABSTRACT

Prostate cancer (PCa) is characterized as a "cold tumor" with limited immune responses, rendering the tumor resistant to immune checkpoint inhibitors (ICI). Therapeutic messenger RNA (mRNA) vaccines have emerged as a promising strategy to overcome this challenge by enhancing immune reactivity and significantly boosting anti-tumor efficacy. In our study, we synthesized Tetra, an mRNA vaccine mixed with multiple tumor-associated antigens, and ImmunER, an immune-enhancing adjuvant, aiming to induce potent anti-tumor immunity. ImmunER exhibited the capacity to promote dendritic cells (DCs) maturation, enhance DCs migration, and improve antigen presentation at both cellular and animal levels. Moreover, Tetra, in combination with ImmunER, induced a transformation of bone marrow-derived dendritic cells (BMDCs) to cDC1-CCL22 and up-regulated the JAK-STAT1 pathway, promoting the release of IL-12, TNF-α, and other cytokines. This cascade led to enhanced proliferation and activation of T cells, resulting in effective killing of tumor cells. In vivo experiments further revealed that Tetra + ImmunER increased CD8+T cell infiltration and activation in RM-1-PSMA tumor tissues. In summary, our findings underscore the promising potential of the integrated Tetra and ImmunER mRNA-LNP therapy for robust anti-tumor immunity in PCa.


Subject(s)
Adjuvants, Immunologic , Antigens, Neoplasm , Cancer Vaccines , Dendritic Cells , Prostatic Neoplasms , RNA, Messenger , Animals , Male , Prostatic Neoplasms/immunology , Prostatic Neoplasms/therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/drug therapy , Antigens, Neoplasm/immunology , Mice , Dendritic Cells/immunology , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/administration & dosage , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Messenger/administration & dosage , Cancer Vaccines/administration & dosage , Cancer Vaccines/immunology , Humans , Mice, Inbred C57BL , Cell Line, Tumor , mRNA Vaccines , CD8-Positive T-Lymphocytes/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Immunotherapy/methods , Lymphocyte Activation/drug effects
19.
Opt Lett ; 49(13): 3612-3615, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950222

ABSTRACT

While lasers have found their successful applications in various clinical specialties, in clinical dental practice, traditional mechanical drills are still predominantly utilized. Although erbium-doped lasers have been demonstrated for dental therapy, their clinical performance is still not satisfactory due to the long pulse width, low peak power, and small repetition rate. To attain a smaller thermal diffusion thus better biological safety and surgical precision, as well as more rapid ablation, the advancement of femtosecond laser techniques has opened another route of dental surgery; however, no biological safety investigation has been reported. Here, we present a systematic study of dental ablation by a Yb:CaAlGdO4 regenerative amplifier with a central wavelength of 1040 nm and pulse width of 160 fs. The in vivo experiment of dental surgery investigating the inflammatory response has been reported, for the first time to the best of our knowledge. It is demonstrated that dental surgery by Yb:CaAlGdO4 femtosecond laser ablation has better biological safety compared to the turbine drilling, thanks to its non-contact and ultrafast heat dissipation nature.


Subject(s)
Laser Therapy , Laser Therapy/methods , Laser Therapy/instrumentation , Animals , Ytterbium/chemistry , Lasers, Solid-State
20.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(6): 538-543, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38952094

ABSTRACT

Objective To investigate the expression levels of lncRNA H19 in ulcerative colitis (UC) patients and its role in UC. Methods Colonic mucosa and serum samples were collected from 25 UC patients and 25 healthy individuals at the General Hospital of Xizang Military Region. The expression levels of lncRNA H19 were detected, and the receiver operating characteristic (ROC) curve analysis was performed using serum samples. An in vitro inflammatory model was established in HT29 colorectal cells under lipopolysaccharide (LPS) stimulation, and the expression levels of lncRNA H19 were observed in HT29 cells through fluorescence quantitative PCR. HT29 cells with downregulated lncRNA H19 was constructed using lentivirus-mediated shRNA. The effect of lncRNA H19 on cell survival was analyzed through MTT assay. Cell apoptosis was detected by flow cytometry, and the protein expression levels of apoptosis and autophagy markers were analyzed through Western blot. After treatment with rapamycin, the survival of HT29 cells was observed by MTT assay. Results lncRNA H19 was highly expressed in the colonic mucosa and serum samples of UC patients with the ROC area being 0.786. Following LPS stimulation, the expression levels of lncRNA H19 was significantly increased in a time-dependent manner. Downregulation of lncRNA H19 can promote cell survival, inhibit cell apoptosis and increase autophagy level in HT29 cells. Treatment with rapamycin significantly increased the cell survival rate. Conclusion Knock-down of lncRNA H19 increases autophagy levels, inhibits LPS-induced apoptosis and promotes the survival of colon cells.


Subject(s)
Apoptosis , Autophagy , Colitis, Ulcerative , Lipopolysaccharides , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Apoptosis/drug effects , Apoptosis/genetics , Autophagy/drug effects , Autophagy/genetics , Lipopolysaccharides/pharmacology , Colitis, Ulcerative/genetics , Colitis, Ulcerative/metabolism , HT29 Cells , Male , Female , Middle Aged , Adult , Gene Knockdown Techniques
SELECTION OF CITATIONS
SEARCH DETAIL