Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Biotechnol (NY) ; 26(2): 230-242, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38502428

ABSTRACT

Antibiotics are widely used in aquaculture to treat the bacterial diseases. However, the improper use of antibiotics could lead to environmental pollution and development of resistance. As a safe and eco-friendly alternative, antimicrobial peptides (AMPs) are commonly explored as therapeutic agents. In this study, a mutant strain of Tetraselmis subcordiformis containing AMP NZ2114 was developed and used as an oral drug delivery system to reduce the use of antibiotics in turbot (Scophthalmus maximus) aquaculture. The gut, kidney, and liver immune-related genes and their effects on gut digestion and bacterial communities in turbot fed with NZ2114 were evaluated in an 11-day feeding experiment. The results showed that compared with the group fed with wild-type T. subcordiformis, the group fed with T. subcordiformis transformants containing NZ2114 was revealed with decreased levels of both pro-inflammatory factors (TNF-α and IL-1ß), inhibitory effect on Staphylococcus aureus, Vibrio parahaemolyticus, and Vibrio splendidus demonstrated by the in vitro simulation experiments, and increased richness and diversity of the gut microbiota of turbot. In conclusion, our study provided a novel, beneficial, and low-cost method for controlling bacteria in turbot culture through the oral drug delivery systems.


Subject(s)
Flatfishes , Microalgae , Animals , Flatfishes/immunology , Flatfishes/genetics , Flatfishes/microbiology , Administration, Oral , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/genetics , Gastrointestinal Microbiome/drug effects , Aquaculture , Chlorophyta , Vibrio/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Liver/metabolism , Liver/drug effects , Staphylococcus aureus/drug effects
2.
Mar Drugs ; 20(8)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-36005487

ABSTRACT

To solve the problem of antibiotic abuse in aquaculture and to utilize the application potential of antimicrobial peptides (AMPs), a chloroplast transformation system of Porphyridium purpureum was successfully constructed for effectively expressing two exogenous AMPs. The endogenous fragments of 16S rDNA/trnA-23S rDNA were used as flanking fragments for the homologous recombination in the chloroplast genome. Two AMPs encoded by the transformation vector were controlled by the native promoter psbB in a polycistron. The plasmids were transferred into P. purpureum via particle bombardment and the transformation vectors were screened using phosphinothricin (bar), a dominant selection marker under the control of the psbA promoter. Subsequently, in the positive transformed colonies, the exogenous fragments were found to be inserted in the flanking fragments directionally as expected and two foreign AMPs were successfully obtained. Finally, two exogenous peptides with antibacterial properties were obtained from the transformed strain. The two AMPs expressed by the transformed strain were shown to have similar inhibitory effects to antibiotics by inhibition tests. This suggested that AMPs can be introduced into aquaculture using baited microalgae, providing new ideas and ways to solve a series of aquaculture diseases caused by bacteria.


Subject(s)
Porphyridium , Anti-Bacterial Agents/pharmacology , Antimicrobial Peptides , Chloroplasts/genetics , DNA, Ribosomal
SELECTION OF CITATIONS
SEARCH DETAIL