Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Int J Biol Macromol ; : 133753, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39084974

ABSTRACT

In the study, lycopene and resveratrol nanoemulsion hydrogel beads were prepared by using agarose­sodium alginate as a carrier and the semi-interpenetrating polymer network technique, characteristics and morphologies were evaluated by scanning electron microscopy, fluorescence microscopy, rheological measurement. The synergistic antioxidant effect of lycopene and resveratrol was confirmed, the best synergistic antioxidant performance is achieved when the ratio of 1:1. To increase the solubility and improve the stability, the lycopene was prepared as solid dispersion added to the nanoemulsion. The encapsulation rate of lycopene and resveratrol reached 93.60 ± 2.94 % and 89.30 ± 1.75 %, respectively, and the cumulative release showed that the addition of agarose slowed down the release rate of the compound, which improves the applicability of lycopene and resveratrol and development of carriers for the delivery of different bioactive ingredients.

2.
J Pharm Anal ; 14(5): 100913, 2024 May.
Article in English | MEDLINE | ID: mdl-38799237

ABSTRACT

Obesity and related metabolic syndromes have been recognized as important disease risks, in which the role of adipokines cannot be ignored. Adiponectin (ADP) is one of the key adipokines with various beneficial effects, including improving glucose and lipid metabolism, enhancing insulin sensitivity, reducing oxidative stress and inflammation, promoting ceramides degradation, and stimulating adipose tissue vascularity. Based on those, it can serve as a positive regulator in many metabolic syndromes, such as type 2 diabetes (T2D), cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), sarcopenia, neurodegenerative diseases, and certain cancers. Therefore, a promising therapeutic approach for treating various metabolic diseases may involve elevating ADP levels or activating ADP receptors. The modulation of ADP genes, multimerization, and secretion covers the main processes of ADP generation, providing a comprehensive orientation for the development of more appropriate therapeutic strategies. In order to have a deeper understanding of ADP, this paper will provide an all-encompassing review of ADP.

3.
J Ethnopharmacol ; 330: 118217, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38641072

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The natural anodyne Ligustilide (Lig), derived from Angelica sinensis (Oliv.) Diels and Ligusticum chuanxiong Hort., has been traditionally employed for its analgesic properties in the treatment of dysmenorrhea and migraine, and rheumatoid arthritis pain. Despite the existing reports on the correlation between TRP channels and the analgesic effects of Lig, a comprehensive understanding of their underlying mechanisms of action remains elusive. AIM OF THE STUDY: The objective of this study is to elucidate the mechanism of action of Lig on the analgesic target TRPA1 channel. METHODS: The therapeutic effect of Lig was evaluated in a rat acute soft tissue injury model. The analgesic target was identified through competitive inhibition of TRP channel agonists at the animal level, followed by Fluo-4/Ca2+ imaging on live cells overexpressing TRP proteins. The potential target was verified through in-gel imaging, colocalization using a Lig-derived molecular probe, and a drug affinity response target stability assay. The binding site of Lig was identified through protein spectrometry and further analyzed using molecular docking, site-specific mutation, and multidisciplinary approaches. RESULTS: The administration of Lig effectively ameliorated pain and attenuated oxidative stress and inflammatory responses in rats with soft tissue injuries. Moreover, the analgesic effects of Lig were specifically attributed to TRPA1. Mechanistic studies have revealed that Lig directly activates TRPA1 by interacting with the linker domain in the pre-S1 region of TRPA1. Through metabolic transformation, 6,7-epoxyligustilide (EM-Lig) forms a covalent bond with Cys703 of TRPA1 at high concentrations and prolonged exposure time. This irreversible binding prevents endogenous electrophilic products from entering the cysteine active center of ligand-binding pocket of TRPA1, thereby inhibiting Ca2+ influx through the channel opening and ultimately relieving pain. CONCLUSIONS: Lig selectively modulates the TRPA1 channel in a bimodal manner via non-electrophilic/electrophilic metabolic conversion. The epoxidized metabolic intermediate EM-Lig exerts analgesic effects by irreversibly inhibiting the activation of TRPA1 on sensory neurons. These findings not only highlight the analgesic mechanism of Lig but also offer a novel nucleophilic attack site for the development of TRPA1 antagonists in the pre-S1 region.


Subject(s)
4-Butyrolactone , Analgesics , TRPA1 Cation Channel , Animals , Female , Humans , Male , Rats , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/pharmacology , 4-Butyrolactone/chemistry , Analgesics/pharmacology , Analgesics/chemistry , Binding Sites , Cysteine/pharmacology , Cysteine/chemistry , HEK293 Cells , Molecular Docking Simulation , Pain/drug therapy , Rats, Sprague-Dawley , TRPA1 Cation Channel/metabolism
4.
J Imaging ; 9(10)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37888310

ABSTRACT

Fundus diseases cause damage to any part of the retina. Untreated fundus diseases can lead to severe vision loss and even blindness. Analyzing optical coherence tomography (OCT) images using deep learning methods can provide early screening and diagnosis of fundus diseases. In this paper, a deep learning model based on Swin Transformer V2 was proposed to diagnose fundus diseases rapidly and accurately. In this method, calculating self-attention within local windows was used to reduce computational complexity and improve its classification efficiency. Meanwhile, the PolyLoss function was introduced to further improve the model's accuracy, and heat maps were generated to visualize the predictions of the model. Two independent public datasets, OCT 2017 and OCT-C8, were applied to train the model and evaluate its performance, respectively. The results showed that the proposed model achieved an average accuracy of 99.9% on OCT 2017 and 99.5% on OCT-C8, performing well in the automatic classification of multi-fundus diseases using retinal OCT images.

5.
Chin Herb Med ; 15(3): 349-359, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37538862

ABSTRACT

Natto is a soybean product fermented by natto bacteria. It is rich in a variety of amino acids, vitamins, proteins and active enzymes. It has a number of biological activities, such as thrombolysis, prevention of osteoporosis, antibacterial, anticancer, antioxidant and so on. It is widely used in medicine, health-care food, biocatalysis and other fields. Natto is rich in many pharmacological active substances and has significant medicinal research value. This paper summarizes the pharmacological activities and applications of natto in and outside China, so as to provide references for further research and development of natto.

6.
Biomed Pharmacother ; 166: 115323, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37579692

ABSTRACT

Dyslipidemia is characterized by elevated levels of total cholesterol and triglycerides in serum, and has become the primary human health killer because of the major risk factors for cardiovascular diseases. Although there exist plenty of drugs for dyslipidemia, the number of patients who could benefit from lipid-lowering drugs still remains a concern. Ligustilide (Lig), a natural phthalide derivative, was reported to regulate lipid metabolic disorders. However, its specific targets and underlying molecular mechanism are still unclear. In this study, we found that Lig alleviated high fat diet-induced dyslipidemia by inhibiting cholesterol biosynthesis. Furthermore, a series of chemical biological analysis methods were used to identify its target protein for regulating lipid metabolism. Collectively, 3-hydroxy-3-methylglutaryl coenzyme A synthetase 1 (HMGCS1) of hepatic cells was identified as a target for Lig to regulate lipid metabolism. The mechanistic study confirmed that Lig irreversibly binds to Cys129 of HMGCS1 via its metabolic intermediate 6,7-epoxyligustilide, thereby reducing cholesterol synthesis and improving lipid metabolism disorders. These findings not only systematically elucidated the lipid-lowering mechanism of Lig, but also provided a new structural compound for the treatment of dyslipidemia.


Subject(s)
Coenzyme A Ligases , Dyslipidemias , Humans , Triglycerides , Dyslipidemias/drug therapy , Cholesterol , Hydroxymethylglutaryl-CoA Synthase
7.
Phytomedicine ; 119: 154992, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37499433

ABSTRACT

BACKGROUND: Panax ginseng and Panax notoginseng as traditional Chinese medicines, are widely used in the treatment of qi deficiency, viral or bacterial infection, inflammation and cancer. Ginsenoside CK, an active metabolite of protopanoxadiol among the ginseng saponins, has been shown in previous studies to improve the organism's oxidative balance by regulating the KEAP1-NRF2/ARE pathway, thus slowing the progression of diseases. However, the specific targets and mechanisms of CK in improving oxidative stress remain unclear. PURPOSE: The aim of this study was to determine the potential therapeutic targets and molecular mechanisms of CK in improving oxidative stress injury both in vitro and in vivo. METHODS: LPS was used to induce oxidative damage in RAW 264.7 cells to evaluate the regulatory effects of CK on the KEAP1-NRF2/ARE pathway. Drug affinity responsive target stability technology (DARTS) combined with proteomics was employed to identify CK's potential target proteins. CK functional probe were designed to analyze the target protein using click chemistry. Furthermore, small molecule and protein interaction technologies were used to verify the mechanism, and computer dynamic simulation technology was used to analyze the interaction sites between CK and the target protein. The pharmacological effects and mechanism of CK in improving oxidative damage were verified in vivo by LPS-induced acute injury in mice and physical mechanical injury in rat soft tissues. RESULTS: KEAP1 was identified as the target protein that CK regulates to improve oxidative damage through the KEAP1-NRF2/ARE pathway. CK competitively binds to the DGR/Kelch domain of KEAP1, disrupting the binding between DLG peptide in NRF2 and KEAP1, thereby inhibiting the occurrence of oxidative damage induced by LPS or physical mechanical stress. CONCLUSIONS: CK functions as a natural KEAP1-NRF2 inhibitor, disrupting the binding between KEAP1 and NRF2-DLG motifs by targeting the DGR/Kelch domain of KEAP1, activating the antioxidant transcriptional program of NRF2, and reducing oxidative stress damage.


Subject(s)
Kelch Repeat , NF-E2-Related Factor 2 , Animals , Mice , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Lipopolysaccharides/pharmacology , Oxidative Stress
8.
Chin Med ; 18(1): 45, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37098552

ABSTRACT

Shufeng Jiedu Capsule (SFJDC), composed of eight herbs, is a big brand traditional Chinese medicine (TCM) for the treatment of different respiratory tract infectious diseases with good clinical efficacy and few side effects. It is clinically applied to acute upper respiratory tract infection(URI), influenza, acute exacerbation of chronic obstructive pulmonary disease (AECOPD), community-acquired pneumonia(CAP) and other diseases, due to its antibacterial, antiviral, anti-inflammatory, immunoregulatory and antipyretic activities. In particular, it has shown good clinical effects for COVID-19, and was included in the fourth to tenth editions of the 'Diagnosis and Treatment Protocol for COVID-19 (Trial)' by the National Health Commission. In recent years, studies on the secondary development which focus on the basic and clinical application of SFJDC have been widely reported. In this paper, chemical components, pharmacodynamic material basis, mechanisms, compatibility rule and clinical application were systematically summarized, in order to provide theoretical and experimental basis for further research and clinical application of SFJDC.

9.
Front Psychol ; 14: 1100717, 2023.
Article in English | MEDLINE | ID: mdl-36968692

ABSTRACT

This study investigates the present situation of and changing trend in the innovation efficiency of health industry enterprises in China. Based on panel data for 192 listed health companies in China from 2015 to 2020, we analyse innovation efficiency using the DEA-Malmquist index and test convergence using σ-convergence and ß-convergence models. From 2016 to 2019, comprehensive average innovation efficiency increased from 0.6207 to 0.7220 and average innovation efficiency decreased significantly in 2020. The average Malmquist index was 1.072. Innovation efficiency in China as a whole, North China, South China, and Northwest China showed σ-convergence. Except for the Northwest region, absolute ß-convergence was evident, and in China as a whole, North China, Northeast China, East China, and South China, conditional ß-convergence was evident. Overall innovation efficiency of these companies has increased annually but needs further improvement, and the COVID-19 pandemic has had a great negative impact on it. Innovation efficiency and trends in it vary across regions. Furthermore, we should pay attention to the impacts of innovation infrastructure and government scientific and technological support on innovation efficiency.

10.
Micromachines (Basel) ; 14(3)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36985112

ABSTRACT

At present, multi-disease fundus image classification tasks still have the problems of small data volumes, uneven distributions, and low classification accuracy. In order to solve the problem of large data demand of deep learning models, a multi-disease fundus image classification ensemble model based on gradient-weighted class activation mapping (Grad-CAM) is proposed. The model uses VGG19 and ResNet50 as the classification networks. Grad-CAM is a data augmentation module used to obtain a network convolutional layer output activation map. Both the augmented and the original data are used as the input of the model to achieve the classification goal. The data augmentation module can guide the model to learn the feature differences of lesions in the fundus and enhance the robustness of the classification model. Model fine tuning and transfer learning are used to improve the accuracy of multiple classifiers. The proposed method is based on the RFMiD (Retinal Fundus Multi-Disease Image Dataset) dataset, and an ablation experiment was performed. Compared with other methods, the accuracy, precision, and recall of this model are 97%, 92%, and 81%, respectively. The resulting activation graph shows the areas of interest for model classification, making it easier to understand the classification network.

11.
Zhongguo Zhong Yao Za Zhi ; 48(1): 170-182, 2023 Jan.
Article in Chinese | MEDLINE | ID: mdl-36725269

ABSTRACT

This study aims to explore the mechanism of Qingkailing(QKL) Oral Preparation's heat-clearing, detoxifying, mind-tranquilizing effects based on "component-target-efficacy" network. To be specific, the potential targets of the 23 major components in QKL Oral Preparation were predicted by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) and SwissTargetPrediction. The target genes were obtained based on UniProt. OmicsBean and STRING 10 were used for Gene Ontology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment of the targets. Cytoscape 3.8.2 was employed for visualization and construction of "component-target-pathway-pharmacological effect-efficacy" network, followed by molecular docking between the 23 main active components and 15 key targets. Finally, the lipopolysaccharide(LPS)-induced RAW264.7 cells were adopted to verify the anti-inflammatory effect of six monomer components in QKL Oral Preparation. It was found that the 23 compounds affected 33 key signaling pathways through 236 related targets, such as arachidonic acid metabolism, tumor necrosis factor α(TNF-α) signaling pathway, inflammatory mediator regulation of TRP channels, cAMP signaling pathway, cGMP-PKG signaling pathway, Th17 cell differentiation, interleukin-17(IL-17) signaling pathway, neuroactive ligand-receptor intera-ction, calcium signaling pathway, and GABAergic synapse. They were involved in the anti-inflammation, immune regulation, antipyretic effect, and anti-convulsion of the prescription. The "component-target-pathway-pharmacological effect-efficacy" network of QKL Oral Preparation was constructed. Molecular docking showed that the main active components had high binding affinity to the key targets. In vitro cell experiment indicated that the six components in the prescription(hyodeoxycholic acid, baicalin, chlorogenic acid, isochlorogenic acid C, epigoitrin, geniposide) can reduce the expression of nitric oxide(NO), TNF-α, and interleukin-6(IL-6) in cell supernatant(P<0.05). Thus, the above six components may be the key pharmacodynamic substances of QKL Oral Preparation. The major components in QKL Oral Prescription, including hyodeoxycholic acid, baicalin, chlorogenic acid, isochlorogenic acid C, epigoitrin, geniposide, cholic acid, isochlorogenic acid A, and γ-aminobutyric acid, may interfere with multiple biological processes related to inflammation, immune regulation, fever, and convulsion by acting on the key protein targets such as IL-6, TNF, prostaglandin-endoperoxide synthase 2(PTGS2), arachidonate 5-lipoxygenase(ALOX5), vascular cell adhesion molecule 1(VCAM1), nitric oxide synthase 2(NOS2), prostaglandin E2 receptor EP2 subtype(PTGER2), gamma-aminobutyric acid receptor subunit alpha(GABRA), gamma-aminobutyric acid type B receptor subunit 1(GABBR1), and 4-aminobutyrate aminotransferase(ABAT). This study reveals the effective components and mechanism of QKL Oral Prescription.


Subject(s)
Drugs, Chinese Herbal , Tumor Necrosis Factor-alpha , Chlorogenic Acid , Drugs, Chinese Herbal/pharmacology , gamma-Aminobutyric Acid , Interleukin-6 , Medicine, Chinese Traditional , Molecular Docking Simulation , Tumor Necrosis Factor-alpha/genetics , Animals , Mice , RAW 264.7 Cells
12.
Molecules ; 27(21)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36364280

ABSTRACT

Taste masking of traditional Chinese medicines (TCMs) containing multiple bitter components remains an important challenge. In this study, berberine (BER) in alkaloids and phillyrin (PHI) in flavonoid glycosides, which are common bitter components in traditional Chinese medicines, were selected as model drugs. Chitosan (CS) was used to mask their unfriendly taste. Firstly, from the molecular level, we explained the taste-masking mechanism of CS on those two bitter components in detail. Based on those taste-masking mechanisms, the bitter taste of a mixture of BER and PHI was easily masked by CS in this work. The physicochemical characterization results showed the taste-masking compounds formed by CS with BER (named as BER/CS) and PHI (named as PHI/CS) were uneven in appearance. The drug binding efficiency of BER/CS and PHI/CS was 50.15 ± 2.63% and 67.10 ± 2.52%, respectively. The results of DSC, XRD, FTIR and molecular simulation further indicated that CS mainly masks the bitter taste by disturbing the binding site of bitter drugs and bitter receptors in the oral cavity via forming hydrogen bonds between its hydroxyl or amine groups and the nucleophilic groups of BER and PHI. The taste-masking evaluation results by the electronic tongue test confirmed the excellent taste-masking effects on alkaloids, flavonoid glycosides or a mixture of the two kinds of bitter components. The in vitro release as well as in vivo pharmacokinetic results suggested that the taste-masked compounds in this work could achieve rapid drug release in the gastric acid environment and did not influence the in vivo pharmacokinetic results of the drug. The taste-masking method in this work may have potential for the taste masking of traditional Chinese medicine compounds containing multiple bitter components.


Subject(s)
Alkaloids , Chitosan , Chitosan/chemistry , Taste , Medicine, Chinese Traditional , Glycosides/pharmacology , Flavonoids/pharmacology , Alkaloids/pharmacology
13.
Micromachines (Basel) ; 13(6)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35744561

ABSTRACT

Fundus diseases can cause irreversible vision loss in both eyes if not diagnosed and treated immediately. Due to the complexity of fundus diseases, the probability of fundus images containing two or more diseases is extremely high, while existing deep learning-based fundus image classification algorithms have low diagnostic accuracy in multi-labeled fundus images. In this paper, a multi-label classification of fundus disease with binocular fundus images is presented, using a neural network algorithm model based on attention mechanisms and feature fusion. The algorithm highlights detailed features in binocular fundus images, and then feeds them into a ResNet50 network with attention mechanisms to extract fundus image lesion features. The model obtains global features of binocular images through feature fusion and uses Softmax to classify multi-label fundus images. The ODIR binocular fundus image dataset was used to evaluate the network classification performance and conduct ablation experiments. The model's backend is the Tensorflow framework. Through experiments on the test images, this method achieved accuracy, precision, recall, and F1 values of 94.23%, 99.09%, 99.23%, and 99.16%, respectively.

14.
Zhongguo Zhong Yao Za Zhi ; 47(7): 1790-1801, 2022 Apr.
Article in Chinese | MEDLINE | ID: mdl-35534249

ABSTRACT

This study aims to establish a method for analyzing the chemical constituents in Cistanches Herba by high performance liquid chromatography(HPLC) and quadrupole-time-of-flight tandem mass spectrometry(HPLC-Q-TOF-MS/MS), and to reveal the pharmacological mechanism based on network pharmacology for mining the quality markers(Q-markers) of Cistanches Herba. The chemical constituents of Cistanche deserticola and C. tubulosa were analyzed via HPLC-Q-TOF-MS/MS. The potential targets and pathways of Cistanches Herba were predicted via SwissTargetPrediction and DAVID. The compound-target-pathway-pharmacological action-efficacy network was constructed via Cytoscape. A total of 47 chemical constituents were identified, involving 95 targets and 56 signaling pathways. We preliminarily elucidated the pharmacological mechanisms of echinacoside, acteoside, isoacteoside, cistanoside F, 2'-acetylacteoside, cistanoside A, campneoside Ⅱ, salidroside, tubuloside B, 6-deoxycatalpol, 8-epi-loganic acid, ajugol, bartsioside, geniposidic acid, and pinoresinol 4-O-ß-D-glucopyranoside, and predicted them to be the Q-markers of Cistanches Herba. This study identified the chemical constituents of Cistanches Herba, explained the pharmacological mechanism of the traditional efficacy of Cistanches Herba based on network pharmacology, and introduced the core concept of Q-markers to improve the quality evaluation of Cistanches Herba.


Subject(s)
Cistanche , Drugs, Chinese Herbal , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/metabolism , Drugs, Chinese Herbal/pharmacology , Network Pharmacology , Tandem Mass Spectrometry/methods
15.
Zhongguo Zhong Yao Za Zhi ; 47(5): 1392-1402, 2022 Mar.
Article in Chinese | MEDLINE | ID: mdl-35343168

ABSTRACT

Qingjin Huatan Decoction is a classic prescription with the effects of clearing heat, moistening lung, resolving phlegm, and relieving cough. In order to explore the critical quality attributes of Qingjin Huatan Decoction, we identified the blood components of Qingjin Huatan Decoction by ultra-performance liquid chromatography quadrupole time of flight mass spectrometry(UPLC-Q-TOF-MS) under the following conditions, chromatographic column: Acquity UPLC BEH C_(18) column(2.1 mm×100 mm, 1.7 µm); mobile phase: 0.1% formic acid acetonitrile(A)-0.1% formic acid in water(B); gradient elution; flow rate: 0.2 mL·min~(-1); column temperature: 30 ℃; injection volume: 5 µL. The electrospray ionization(ESI) source was used to collect data in both positive and negative ion modes under the following conditions, capillary voltage: 3 kV for the positive ion mode and 2 kV for the negative ion mode; ion source temperature: 110 ℃; cone voltage: 30 V; cone gas flow rate: 50 L·h~(-1); nitrogen degassing temperature: 350 ℃; degassing volume flow rate: 800 L·h~(-1); scanning range: m/z 50-2 000. In this experiment, a total of 66 related components of Qingjin Huatan Decoction were identified, including 22 prototype components and 44 metabolites. The results of this study preliminarily revealed the pharmacodynamic material basis of Qingjin Huatan Decoction in vivo, which has provided an experimental basis for the determination of quality markers of Qingjin Huatan Decoction and the development of new drugs.


Subject(s)
Drugs, Chinese Herbal , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid , Drugs, Chinese Herbal/chemistry , Tandem Mass Spectrometry/methods
16.
Article in English | MEDLINE | ID: mdl-35162652

ABSTRACT

This paper uses the Heckprobit two-stage econometric model to explore the influence mechanism of poultry farmers' willingness and behavior regarding scale based on 269 household survey data in the hinterland of Jianghan Plain, China. The results show that (1) family endowments, social capital, economic capital, product market prediction, and major public emergencies are the main influencing factors for farmers to engage in poultry farming; (2) economic capital, policy guarantees, product market prediction, and major public emergencies are the main factors that influence the changes in farmers' poultry breeding scale; and (3) sampled poultry farmers are inconsistent between their breeding willingness and breeding behavior in poultry decision-making and the factors that affect the willingness and behavior are varied. Based on these findings, this paper suggests that the government should pay attention to inducing corresponding assistance and subsidy policies, formulating financial support countermeasures, organizing training and exchange meetings of the breeding industry, and promoting poultry market informatization to help the poultry industry prosper.


Subject(s)
Farmers , Poultry , Agriculture , Animals , Breeding , China , Humans
17.
Front Pharmacol ; 12: 653887, 2021.
Article in English | MEDLINE | ID: mdl-33981233

ABSTRACT

Background: Metabolic activity is the basic life activity of organisms and the fundamental for maintaining body functions. With the improvement of living standards, the incidence of metabolic disorder is also increasing. At present, most of the clinical treatment strategies and meta-analysis for metabolic disorder uncover that combined medicines with berberine ameliorate several metabolic disorders. However, evidence to disclose the therapeutic effect of berberine treatment alone and the possible factors affecting the efficacy is limited. Therefore, we have formulated strict inclusion criteria and selected more reliable data for meta-analysis through more refined screening strategies to provide evidence and guidance for clinical decision-making and understand the effect of berberine treatment alone and the factors affecting its efficacy. Methods and results: Using meta-analysis of "Cochrane Handbook for Systematic Reviews of Interventions" as guidelines, we searched PubMed, GeenMedical, Cochrane library, and china national knowledge infrastructure (CNKI) for trials reporting clinical treatment data of berberine. Another 417 trials were included through other sources to increase confidence in results. Among the 1,660 related documents retrieved from the four databases, 18 eligible documents were selected for analysis. Given the differences in trial design and measurement units, we used the standardized mean difference (SMD) method to eliminate the differences and then summarize the data for analysis. The main factors are triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), homeostasis model assessment-insulin resistance (HOMA-IR), and fasting plasma glucose (FPG). Random-effect model analysis was performed: TG (SMD: 0.94; 95%CI: 0.49,1.38; p = 0.00), TC (SMD: 1.06; 95%CI: 0.64, 1.48; p = 0.00), LDL (SMD: 1.77; 95%CI: 1.11,2.44; p = 0.00), HDL (SMD: -1.59; 95%CI: -2.32, -0.85; p = 0.00), HOMA-IR (SMD: 1.25; 95%CI: 0.25,2.24; p = 0.01), and FPG (SMD: 0.65; 95%CI: 0.28,1.03; p = 0.00). This study aimed to conduct a systematic review and meta-analysis of the literature to evaluate the therapeutic effect of berberine singly on metabolic diseases. Conclusion: Berberine can improve obesity and hyperlipidemia by reducing TG, TC, and LDL and increasing HDL; reduce insulin resistance to improve type Ⅱ diabetes; and prevent diabetic encephalopathy.

18.
Biofactors ; 47(4): 587-599, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33740285

ABSTRACT

IR (insulin resistance) in diabetic brain gave rise to the generation of toxic factor Aß42 and axon collapse which were the marker of AD (Alzheimer's disease)-like lesions in the circumstance of diabetes mellitus. But the underling molecular mechanism was not clear. Chronic HGHI (high glucose and high insulin) exposure accelerates IR has been reported in type II diabetes models. Berberine has been shown to promising effect for IR in vitro and in vivo. This study demonstrates the protective effect and the underlying mechanism of berberine on HGHI-induced IR. HGHI-induced cells were used to mimic the hyperinsulinemia resulting in IR. Berberine was used to uncover the mechanisms for the treatment of hyperinsulinemia in IR model. Morris water maze (MWM), PET imaging, CCK8 assay, ELISA assay, glucose kits, microscopy, and western blot analysis were performed to evaluate the protective effects of berberine. Berberine-improved HGHI-induced IR was correlated with the increase of glucose application in neurons. Meanwhile, the expressions of Pi3K, as well as GLUT3, PKCε, and APP were downregulated in the model, while p-IRS Ser307 was upregulated compared with Normal group. Fortunately, these scenes were reversed by berberine administration. Furthermore, berberine decreased GSK3ß Y216 expressions, inhibited the production of oligomer Aß42 and extended neuronal axon. The monomeric berberine treatment improves IR that may be involved in glucose effective application, rectifying the related proteins of the aberrant insulin pathway. Additionally, it suppressed the generation of Aß42 and ameliorated neuron axon damage. Finally, berberine improves DM (diabetes mellitus)-induced cognitive impairment.


Subject(s)
Berberine/pharmacology , Cognitive Dysfunction/prevention & control , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/pharmacology , Phosphatidylinositol 3-Kinases/genetics , Protein Kinase C-epsilon/genetics , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Animals , Cell Line, Tumor , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/physiopathology , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/pathology , Gene Expression Regulation , Glucose/antagonists & inhibitors , Glucose/pharmacology , Glucose Transporter Type 3/genetics , Glucose Transporter Type 3/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Insulin/pharmacology , Insulin Resistance , Male , Maze Learning/drug effects , Metformin/pharmacology , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Peptide Fragments/genetics , Peptide Fragments/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase C-epsilon/metabolism , Rats , Rats, Wistar , Signal Transduction , Streptozocin/administration & dosage
19.
Biomed Chromatogr ; 34(5): e4813, 2020 May.
Article in English | MEDLINE | ID: mdl-32080873

ABSTRACT

Danhong Huayu Koufuye (DHK), an effective Chinese medicine preparation, is mainly used for the treatment of blurred vision and sudden blindness caused by qi stagnation and blood stasis, as well as the absorption period of central retinal vein occlusion. However, the current quality standard is relatively low, only stipulating the content of protocatechualdehyde. Chemical transitivity is the basis for discovering quality markers and is used in quality process control of Chinese medicines. Herein, the chemical profiles of seven medicinal herbs, DHK and dosed rat plasma were comprehensively analyzed using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. As a result, 134 chemical constituents were identified in seven medicinal herbs, including salvianolic acids, diterpene quinones, phenolic acids, phthalides, cyanogenic glycosides, flavonoids and triterpenoid saponins. Among them, 55 chemical constituents were transferred to DHK along with extraction and preparation, and 26 were further absorbed into blood and metabolized to produce 11 metabolites after oral administration. The transitivity of DHK from medicinal herbs to compound preparation and into blood was analyzed for the first time. This article will be valuable to ascertain the quality markers for quality process control and further pharmacokinetic studies.


Subject(s)
Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacokinetics , Plants, Medicinal/chemistry , Plasma/chemistry , Animals , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/administration & dosage , Male , Mass Spectrometry/methods , Molecular Structure , Rats , Rats, Sprague-Dawley
20.
Rapid Commun Mass Spectrom ; 33(19): 1494-1501, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31148270

ABSTRACT

RATIONALE: Shufeng Jiedu capsule (SFJDC), a prescription of traditional Chinese medicine, is mainly used for the treatment of acute upper respiratory tract infections. However, the bioactive components remain unclear, which partly limits its quality control and further development. This work aimed to carry out a study of plasma pharmacochemistry to identify the potential bioactive components of SFJDC. METHODS: An effective approach based on a combination of ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/QTOF-MS) and multivariate statistical analysis was applied to comprehensively analyze the absorbed components and their metabolites in rat plasma after oral administration of SFJDC. After UPLC/QTOF-MS detection, the differences between control and dosed plasma samples were distinguished by multivariate statistical analysis, and chromatographic signals of xenobiotic compounds were further extracted to identify structures. RESULTS: A total of 46 SFJDC-related xenobiotic compounds were identified as potential bioactive components in rat plasma. Among these, 27 absorbed prototype constituents were mainly flavonoids, anthraquinones, stilbenes, iridoids, lignans, naphthalenes, phenylethanoid glycosides and triterpenoid saponins. Especially for hastatoside, verbenalin, forsythoside A, phillyrin and emodin, they were closely related to the anti-inflammatory effect of SFJDC. CONCLUSIONS: The absorbed components and metabolites of SFJDC in rat plasma were analyzed for the first time. This study will be conducive for ascertaining the quality markers of SFJDC for quality control and pharmacological mechanism research at the molecular level.


Subject(s)
Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Mass Spectrometry/methods , Administration, Oral , Animals , Capsules/administration & dosage , Capsules/chemistry , Capsules/metabolism , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/metabolism , Male , Plasma/chemistry , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL