Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Cell ; 187(13): 3236-3248.e21, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38772369

ABSTRACT

Leveraging AAVs' versatile tropism and labeling capacity, we expanded the scale of in vivo CRISPR screening with single-cell transcriptomic phenotyping across embryonic to adult brains and peripheral nervous systems. Through extensive tests of 86 vectors across AAV serotypes combined with a transposon system, we substantially amplified labeling efficacy and accelerated in vivo gene delivery from weeks to days. Our proof-of-principle in utero screen identified the pleiotropic effects of Foxg1, highlighting its tight regulation of distinct networks essential for cell fate specification of Layer 6 corticothalamic neurons. Notably, our platform can label >6% of cerebral cells, surpassing the current state-of-the-art efficacy at <0.1% by lentivirus, to achieve analysis of over 30,000 cells in one experiment and enable massively parallel in vivo Perturb-seq. Compatible with various phenotypic measurements (single-cell or spatial multi-omics), it presents a flexible approach to interrogate gene function across cell types in vivo, translating gene variants to their causal function.


Subject(s)
Gene Regulatory Networks , Single-Cell Analysis , Animals , Female , Humans , Mice , Cerebral Cortex/metabolism , Cerebral Cortex/cytology , CRISPR-Cas Systems/genetics , Dependovirus/genetics , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Genetic Vectors/metabolism , Mice, Inbred C57BL , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Neurons/metabolism , Neurons/cytology , Single-Cell Analysis/methods , Transcriptome/genetics , Cell Line , Transcription, Genetic
2.
J Comp Neurol ; 532(6): e25627, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38813969

ABSTRACT

During development, cell-intrinsic and cell-extrinsic factors play important roles in neuronal differentiation; however, the underlying mechanisms in nonmammalian species remain largely unknown. We here investigated the mechanisms responsible for the differentiation of sensory input neurons in the chick entopallium, which receives its primary visual input via the tectofugal pathway from the nucleus rotundus. The results obtained revealed that input neurons in the entopallium expressed Potassium Voltage-Gated Channel Subfamily H Member 5 (KCNH5/EAG2) mRNA from embryonic day (E) 11. On the other hand, the onset of protein expression was E20, which was 1 day before hatching. We confirm that entopallium input neurons in chicks were generated during early neurogenesis in the lateral and ventral ventricular zones. Notably, neurons derived from the lateral (LP) and ventral pallium (VP) exhibited a spatially distinct distribution along the rostro-caudal axis. We further demonstrated that the expression of EAG2 was directly regulated by input activity from thalamic axons. Collectively, the present results reveal that thalamic input activity is essential for specifying input neurons among LP- and VP-derived early-generated neurons in the developing chick entopallium.


Subject(s)
Neurogenesis , Thalamus , Animals , Chick Embryo , Neurogenesis/physiology , Thalamus/embryology , Thalamus/cytology , Thalamus/metabolism , Sensory Receptor Cells/physiology , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/cytology , Chickens , Cell Differentiation/physiology , Gene Expression Regulation, Developmental/physiology
3.
Dev Growth Differ ; 64(7): 379-394, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36057539

ABSTRACT

When the regulation of axonal and dendritic growth is altered, the neuronal network becomes disordered, which may contribute to the development of psychiatric disorders. Some genome analyses have suggested relationships between mutations in strawberry notch homologue 1 (SBNO1) and neurodevelopmental disorders. However, the function of SBNO1 has not yet been reported. Here, SBNO1 expression pattern during the development of the cerebral cortex in mice was examined. SBNO1 was strongly expressed in the cortical plate and its expression was maintained at a low level during the postnatal stage. CRISPR/Cas9-based knockout of Sbno1 in Neuro2A cultured cells showed delayed growth of neurites. A cortical neuron-specific conditional knockout mouse was constructed, which resulted in hypotrophy of axon bundles and dendrites in cortical neurons. Thus, when mutated, SBNO1 is a candidate gene for psychiatric diseases, such as schizophrenia, as suggested by human genome studies.


Subject(s)
Neuronal Outgrowth , Neurons , Animals , Cells, Cultured , Cerebral Cortex/metabolism , Humans , Mice , Mice, Knockout , Neurites/metabolism , Neuronal Outgrowth/genetics
4.
Front Cell Neurosci ; 14: 35, 2020.
Article in English | MEDLINE | ID: mdl-32158381

ABSTRACT

Forkhead Box G1 (FOXG1) is a member of the Forkhead family of genes with non-redundant roles in brain development, where alteration of this gene's expression significantly affects the formation and function of the mammalian cerebral cortex. FOXG1 haploinsufficiency in humans is associated with prominent differences in brain size and impaired intellectual development noticeable in early childhood, while homozygous mutations are typically fatal. As such, FOXG1 has been implicated in a wide spectrum of congenital brain disorders, including the congenital variant of Rett syndrome, infantile spasms, microcephaly, autism spectrum disorder (ASD) and schizophrenia. Recent technological advances have yielded greater insight into phenotypic variations observed in FOXG1 syndrome, molecular mechanisms underlying pathogenesis of the disease, and multifaceted roles of FOXG1 expression. In this review, we explore the emerging mechanisms of FOXG1 in a range of transcriptional to posttranscriptional events in order to evolve our current view of how a single transcription factor governs the assembly of an elaborate cortical circuit responsible for higher cognitive functions and neurological disorders.

5.
Front Cell Dev Biol ; 8: 607415, 2020.
Article in English | MEDLINE | ID: mdl-33425915

ABSTRACT

The formation of the neocortex relies on intracellular and extracellular signaling molecules that are involved in the sequential steps of corticogenesis, ranging from the proliferation and differentiation of neural progenitor cells to the migration and dendrite formation of neocortical neurons. Abnormalities in these steps lead to disruption of the cortical structure and circuit, and underly various neurodevelopmental diseases, including dyslexia and autism spectrum disorder (ASD). In this review, we focus on the axon guidance signaling Slit-Robo, and address the multifaceted roles of Slit-Robo signaling in neocortical development. Recent studies have clarified the roles of Slit-Robo signaling not only in axon guidance but also in progenitor cell proliferation and migration, and the maturation of neocortical neurons. We further discuss the etiology of neurodevelopmental diseases, which are caused by defects in Slit-Robo signaling during neocortical formation.

6.
iScience ; 19: 559-571, 2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31445376

ABSTRACT

RECK in neural precursor cells (NPCs) was previously found to support Notch-dependent neurogenesis in mice. On the other hand, recent studies implicate RECK in endothelial cells (ECs) in WNT7-triggered canonical WNT signaling essential for brain angiogenesis. Here we report that RECK in NPCs is also critical for brain angiogenesis. When Reck is inactivated in Foxg1-positive NPCs, mice die shortly after birth with hemorrhage in the forebrain, with angiogenic sprouts stalling at the periphery and forming abnormal aggregates reminiscent of those in EC-selective Reck knockout mice and Wnt7a/b-deficient mice. The hemorrhage can be pharmacologically suppressed by lithium chloride. An effect of RECK in WNT7-producing cells to enhance canonical WNT-signaling in reporter cells is detectable in mixed culture but not with conditioned medium. Our findings suggest that NPC-expressed RECK has a non-cell-autonomous function to promote forebrain angiogenesis through contact-dependent enhancement of WNT signaling in ECs, implying possible involvement of RECK in neurovascular coupling.

7.
Nat Commun ; 10(1): 3581, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31395862

ABSTRACT

The bimodal requisite for a genetic program and external stimuli is a key feature of sensory circuit formation. However, the contribution of cell-intrinsic codes to directing sensory-specific circuits remains unknown. Here, we identify the earliest molecular program that preselects projection neuron types in the sensory neocortex. Mechanistically, Foxg1 binds to an H3K4me1-enriched enhancer site to repress COUP-TFI, where ectopic acquisition of Foxg1 in layer 4 cells transforms local projection neurons to callosal projection neurons with pyramidal morphologies. Removal of Foxg1 in long-range projection neurons, in turn, derepresses COUP-TFI and activates a layer 4 neuron-specific program. The earliest segregation of projection subtypes is achieved through repression of Foxg1 in layer 4 precursors by early growth response genes, the major targets of the transforming growth factor-ß signaling pathway. These findings describe the earliest cortex-intrinsic program that restricts neuronal connectivity in sensory circuits, a fundamental step towards the acquisition of mammalian perceptual behavior.


Subject(s)
Gene Expression Regulation/physiology , Neocortex/physiology , Nerve Net/physiology , Neurons/metabolism , Perception/physiology , Animals , COUP Transcription Factor I/metabolism , Early Growth Response Transcription Factors/metabolism , Female , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Male , Mice , Mice, Knockout , Neocortex/cytology , Nerve Net/cytology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Signal Transduction/physiology , Transforming Growth Factor beta/metabolism
8.
Sci Rep ; 8(1): 11728, 2018 08 06.
Article in English | MEDLINE | ID: mdl-30082833

ABSTRACT

Septal nuclei are telencephalic structures associated with a variety of brain functions as part of the limbic system. The two posterior septal nuclei, the triangular septal nucleus (TS) and the bed nuclei of the anterior commissure (BAC), are involved in fear and anxiety through their projections to the medial habenular nucleus. However, the development of both the TS and BAC remains unclear. Here, we found a novel caudal origin and putative migratory stream of mouse posterior septal neurons arising from the thalamic eminence (TE), a transient developmental structure at the rostral end of the rodent diencephalon. TE-derived cells, which have glutamatergic identity, migrated rostrally and entered the telencephalic territory by passing beneath the third ventricle. Subsequently, they turned dorsally toward the posterior septum. We also observed that TS and BAC neurons in the postnatal septum were labeled with GFP by in utero electroporation into the TE, suggesting a shared origin. Furthermore, TE-derived septal neurons migrated along the fornix, an efferent pathway from the hippocampus. These results demonstrate that posterior septal neurons have a distinct extratelencephalic origin from other septal nuclei. This heterogeneous origin may contribute to neuronal diversity of the septal nuclear complex.


Subject(s)
Diencephalon/cytology , Diencephalon/metabolism , Hippocampus/cytology , Hippocampus/metabolism , Animals , Axons/metabolism , Female , Immunohistochemistry , In Situ Hybridization , Mice , Neurons/cytology , Neurons/metabolism , Pregnancy , Septal Nuclei/metabolism , Thalamus/cytology , Thalamus/metabolism
9.
Methods Mol Biol ; 1650: 319-334, 2017.
Article in English | MEDLINE | ID: mdl-28809032

ABSTRACT

The detection of specific RNA molecules in embryonic tissues has wide research applications including studying gene expression dynamics in brain development and evolution. Recent advances in sequencing technologies have introduced new animal models to explore the molecular principles underlying the assembly and diversification of brain circuits between different amniote species. Here, we provide a step-by-step protocol for a versatile in situ hybridization method that is immediately applicable to a range of amniote embryos including zebra finch and Madagascar ground gecko, two new model organisms that have rapidly emerged for comparative brain studies over recent years. The sensitive detection of transcripts from low to high abundance expression range using the same platform enables direct comparison of gene of interest among different amniotes, providing high-resolution spatiotemporal information of gene expression to dissect the molecular principles underlying brain evolution.


Subject(s)
Amnion/metabolism , Brain/metabolism , Finches/genetics , Gene Expression Regulation, Developmental , In Situ Hybridization/methods , Lizards/genetics , Amnion/embryology , Animals , Brain/embryology , Madagascar
10.
Dev Growth Differ ; 59(4): 258-269, 2017 May.
Article in English | MEDLINE | ID: mdl-28581027

ABSTRACT

Among the forkhead box protein family, Foxg1 is a unique transcription factor that plays pleiotropic and non-redundant roles in vertebrate brain development. The emergence of the telencephalon at the rostral end of the neural tube and its subsequent expansion that is mediated by Foxg1 was a key reason for the vertebrate brain to acquire higher order information processing, where Foxg1 is repetitively used in the sequential events of telencephalic development to control multi-steps of brain circuit formation ranging from cell cycle control to neuronal differentiation in a clade- and species-specific manner. The objective of this review is to discuss how the evolutionary changes in cis- and trans-regulatory network that is mediated by a single transcription factor has contributed to determining the fundamental vertebrate brain structure and its divergent roles in instructing species-specific neuronal circuitry and functional specialization.


Subject(s)
Brain/embryology , Forkhead Transcription Factors/metabolism , Telencephalon/embryology , Animals , Brain/metabolism , Forkhead Transcription Factors/genetics , Gene Expression Regulation, Developmental/physiology , Neurogenesis/physiology , Telencephalon/metabolism
12.
Dev Growth Differ ; 58(1): 59-72, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26748623

ABSTRACT

The development of a multicellular organism involves time-dependent changes in molecular and cellular states; therefore 'time' is an indispensable mathematical parameter of ontogenesis. Regardless of their inextricable relationship, there is a limited number of events for which the output of developmental phenomena primarily uses temporal cues that are generated through multilevel interactions between molecules, cells, and tissues. In this review, we focus on neural stem cells, which serve as a faithful decoder of temporal cues to transmit biological information and generate specific output in the developing nervous system. We further explore the identity of the temporal information that is encoded in neural development, and how this information is decoded into various cellular fate decisions.


Subject(s)
Models, Biological , Nervous System/embryology , Neurogenesis/physiology , Animals , Humans
13.
Front Neurosci ; 9: 274, 2015.
Article in English | MEDLINE | ID: mdl-26321900

ABSTRACT

Information processing in the cerebral cortex requires the activation of diverse neurons across layers and columns, which are established through the coordinated production of distinct neuronal subtypes and their placement along the three-dimensional axis. Over recent years, our knowledge of the regulatory mechanisms of the specification and integration of neuronal subtypes in the cerebral cortex has progressed rapidly. In this review, we address how the unique cytoarchitecture of the neocortex is established from a limited number of progenitors featuring neuronal identity transitions during development. We further illuminate the molecular mechanisms of the subtype-specific integration of these neurons into the cerebral cortex along the radial and tangential axis, and we discuss these key features to exemplify how neocortical circuit formation accomplishes economical connectivity while maintaining plasticity and evolvability to adapt to environmental changes.

14.
Dev Growth Differ ; 57(5): 369-377, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25988525

ABSTRACT

Electroporation is a useful technique to study gene function during development but its broad application is hampered due to the expensive equipment needed. We describe the construction of a transportable, simple and inexpensive electroporator delivering square pulses with varying length and amplitude. The device was successfully used for in utero electroporation in mouse with a performance comparable to that of commercial products.

16.
J Neurosci ; 34(39): 13259-76, 2014 Sep 24.
Article in English | MEDLINE | ID: mdl-25253869

ABSTRACT

The prevailing view of upper-layer (UL) neurogenesis in the cerebral cortex is that progenitor cells undergo successive rounds of asymmetric cell division that restrict the competence and production of UL neurons later in development. However, the recent discovery of UL fate-committed early progenitors raises an alternative perspective concerning their ontogeny. To investigate the emergence of UL progenitors, we manipulated the timing and extent of cortical neurogenesis in vivo in mice. We demonstrated that UL competence is tightly linked to deep-layer (DL) neurogenesis and that this sequence is determined primarily through derepression of Fezf2 by Foxg1 within a closed transcriptional cascade. We further demonstrated that the sequential acquisition of UL competence requires negative feedback, which is propagated from postmitotic DL neurons. Thus, neocortical progenitors integrate intrinsic and extrinsic cues to generate UL neurons through a system that controls the sequence of DL and UL neurogenesis and to scale the production of intracortical projection neurons based on the availability of their subcortical projection neuron counterparts during cortical development and evolution.


Subject(s)
Gene Expression Regulation, Developmental , Neural Stem Cells/metabolism , Neurogenesis , Neurons/metabolism , Animals , Cell Lineage , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Feedback, Physiological , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Mice , Mice, Inbred C57BL , Neocortex/cytology , Neocortex/embryology , Neocortex/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neural Stem Cells/cytology , Neurons/cytology , Transcription, Genetic
17.
Neurosci Res ; 86: 37-49, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25019611

ABSTRACT

The functional integrity of the neocortical circuit relies on the precise production of diverse neuron populations and their assembly during development. In recent years, extensive progress has been made in the understanding of the mechanisms that control differentiation of each neuronal type within the neocortex. In this review, we address how the elaborate neocortical cytoarchitecture is established from a simple neuroepithelium based on recent studies examining the spatiotemporal mechanisms of neuronal subtype specification. We further discuss the critical events that underlie the conversion of the stem amniotes cerebrum to a mammalian-type neocortex, and extend these key findings in the light of mammalian evolution to understand how the neocortex in humans evolved from common ancestral mammals.


Subject(s)
Mammals/anatomy & histology , Neocortex/cytology , Nerve Net/cytology , Neurons/classification , Neurons/physiology , Animals , Biological Evolution , Humans , Neocortex/growth & development
18.
J Neurosci ; 34(16): 5717-31, 2014 Apr 16.
Article in English | MEDLINE | ID: mdl-24741061

ABSTRACT

The elaborate cytoarchitecture of the mammalian neocortex requires the timely production of its constituent pyramidal neurons and interneurons and their disposition in appropriate layers. Numerous chemotropic factors present in the forebrain throughout cortical development play important roles in the orchestration of these events. The Roundabout (Robo) family of receptors and their ligands, the Slit proteins, are expressed in the developing forebrain, and are known to play important roles in the generation and migration of cortical interneurons. However, few studies have investigated their function(s) in the development of pyramidal cells. Here, we observed expression of Robo1 and Slit genes (Slit1, Slit2) in cells lining the telencephalic ventricles, and found significant increases in progenitor cells (basal and apical) at embryonic day (E)12.5 and E14.5 in the developing cortex of Robo1(-/-), Slit1(-/-), and Slit1(-/-)/Slit2(-/-), but not in mice lacking the other Robo or Slit genes. Using layer-specific markers, we found that both early- and late-born pyramidal neuron populations were significantly increased in the cortices of Robo1(-/-) mice at the end of corticogenesis (E18.5). The excess number of cortical pyramidal neurons generated prenatally appears to die in early postnatal life. The observed increase in pyramidal neurons was due to prolonged proliferative activity of their progenitors and not due to changes in cell cycle events. This finding, confirmed by in utero electroporation with Robo1 short hairpin RNA (shRNA) or control constructs into progenitors along the ventricular zone as well as in dissociated cortical cell cultures, points to a novel role for Robo1 in regulating the proliferation and generation of pyramidal neurons.


Subject(s)
Cell Proliferation , Gene Expression Regulation, Developmental/genetics , Neocortex , Nerve Tissue Proteins/metabolism , Neurogenesis/genetics , Neurons/physiology , Receptors, Immunologic/metabolism , Animals , Animals, Newborn , Cells, Cultured , Cerebral Ventricles/cytology , Cerebral Ventricles/embryology , Cerebral Ventricles/growth & development , Embryo, Mammalian , Female , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neocortex/cytology , Neocortex/embryology , Neocortex/growth & development , Nerve Tissue Proteins/genetics , Pregnancy , Rats , Rats, Sprague-Dawley , Receptors, Immunologic/genetics , Roundabout Proteins
19.
Cell Rep ; 3(3): 931-45, 2013 Mar 28.
Article in English | MEDLINE | ID: mdl-23523356

ABSTRACT

The specification of neuronal subtypes in the cerebral cortex proceeds in a temporal manner; however, the regulation of the transitions between the sequentially generated subtypes is poorly understood. Here, we report that the forkhead box transcription factor Foxg1 coordinates the production of neocortical projection neurons through the global repression of a default gene program. The delayed activation of Foxg1 was necessary and sufficient to induce deep-layer neurogenesis, followed by a sequential wave of upper-layer neurogenesis. A genome-wide analysis revealed that Foxg1 binds to mammalian-specific noncoding sequences to repress over 12 transcription factors expressed in early progenitors, including Ebf2/3, Dmrt3, Dmrta1, and Eya2. These findings reveal an unexpected prolonged competence of progenitors to initiate corticogenesis at a progressed stage during development and identify Foxg1 as a critical initiator of neocorticogenesis through spatiotemporal repression, a system that balances the production of nonradially and radially migrating glutamatergic subtypes during mammalian cortical expansion.


Subject(s)
Cell Movement , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Developmental , Neocortex/cytology , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Gene Regulatory Networks , Genome , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Neocortex/embryology , Nerve Tissue Proteins/genetics , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurogenesis , Neurons/classification , Neurons/cytology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Promoter Regions, Genetic , Protein Binding , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic
20.
Cereb Cortex ; 23(6): 1495-508, 2013 Jun.
Article in English | MEDLINE | ID: mdl-22661412

ABSTRACT

Laminar organization is a key feature of the mammalian cerebral cortex, but the mechanisms by which final positioning and "inside-out" distribution of neurons are determined remain largely unknown. Here, we demonstrate that Robo1, a member of the family of Roundabout receptors, regulates the correct positioning of layers II/III pyramidal neurons in the neocortex. Specifically, we used RNA interference in mice to suppress the expression of Robo1 in a subset of layers II/III neurons, and observed the positions of these cells at distinct developmental stages. In contrast to control neurons that migrated toward the pial surface by P1, Robo1-suppressed neurons exhibited a delay in entering the cortical plate at respective stages. Unexpectedly, after the first postnatal week, these neurons were predominantly located in the upper part of layers II/III, in contrast to control cells that were distributed throughout these layers. Sequential electroporation studies revealed that Robo1-suppressed cells failed to establish the characteristic inside-out neuronal distribution and, instead, they accumulated beneath the marginal zone regardless of their birthdate. These results demonstrate that Robo receptors play a crucial role in neocortical lamination and particularly in the positioning of layers II/III pyramidal neurons.


Subject(s)
Cell Movement/genetics , Cerebral Cortex/cytology , Gene Expression Regulation, Developmental/genetics , Nerve Tissue Proteins/metabolism , Pyramidal Cells/physiology , Receptors, Immunologic/metabolism , Age Factors , Animals , Animals, Newborn , COS Cells , Cerebral Cortex/embryology , Cerebral Cortex/growth & development , Chlorocebus aethiops , Deoxyuridine/analogs & derivatives , Deoxyuridine/metabolism , Female , Flow Cytometry , Gene Expression Regulation, Developmental/physiology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Homeodomain Proteins/metabolism , Indoles/metabolism , Mice , Mice, Inbred ICR , Mice, Knockout , Nerve Tissue Proteins/deficiency , Nuclear Proteins/metabolism , Pregnancy , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Receptors, Immunologic/deficiency , Repressor Proteins/metabolism , Transfection , Roundabout Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...