Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Quant Imaging Med Surg ; 14(9): 6963-6977, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39281127

ABSTRACT

Background: Cone beam computed tomography (CBCT) and megavoltage computed tomography (MVCT)-based images demonstrate measurable radiomics features that are potentially prognostic. This study aims to systematically synthesize the current research applying radiomics in head and neck cancers for outcome prediction and to assess the radiomics quality score (RQS) of the studies. Methods: A systematic search was performed to identify available studies on PubMed, Web of Science, and Scopus databases. Studies related to radiomics in oncology/radiotherapy fields and based on predefined Patient, Intervention, Comparator, Outcome, and Study design (PICOS) criteria were included. The methodological quality of the included study was evaluated independently by two reviewers according to the RQS. The Mann-Whitney U test was performed according to subgroups. The P values <0.05 were considered statistically significant. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 reporting guidelines were adhered to. Results: From a total of 743 identified studies, six original studies were eligible for inclusion in the systematic review (median =97 patients). The intraclass correlation coefficient (ICC) for inter-reviewer on total RQS was excellent with 0.99 [95% confidence interval (CI) of 0.946< ICC <0.999]. There were no significant differences in the analyses between each RQS domain and subgroup components (P always >0.05). Numerically higher RQS domains score for publication year ≤2022 than 2023 and number of patients > median than ≤ median but not statistically significant. Conclusions: The number of radiomics studies involving CBCT and MVCT is still very limited. Self-reported RQS assessments should be encouraged for all radiomics studies.

2.
Phytomedicine ; 130: 155707, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38788393

ABSTRACT

BACKGROUND: Sepsis causes multiple organ dysfunctions and raises mortality and morbidity rates through a dysregulated host response to infection. Despite the growing research interest over the last few years, no satisfactory treatment exists. Naringin, a naturally occurring bioflavonoid with vast therapeutic potential in citrus fruits and Chinese herbs, has received much attention for treating sepsis-associated multiple organ dysfunctions. PURPOSE: The review describes preclinical evidence of naringin from 2011 to 2024, particularly emphasizing the mechanism of action mediated by naringin against sepsis-associated specific injuries. The combination therapy, safety profile, drug interactions, recent advancements in formulation, and future perspectives of naringin are also discussed. METHODS: In vivo and in vitro studies focusing on the potential role of naringin and its mechanism of action against sepsis-associated organ injuries were identified and summarised in the present manuscript, which includes contributions from 2011 to 2024. All the articles were extracted from the Medline database using PubMed, Science Direct, and Web of Science with relevant keywords. RESULTS: Research findings revealed that naringin modulates many signaling cascades, such as Rho/ROCK and PPAR/STAT1, PIP3/AKT and KEAP1/Nrf2, and IkB/NF-kB and MAPK/Nrf2/HO-1, to potentially protect against sepsis-induced intestinal, cardiac, and lung injury, respectively. Furthermore, naringin treatment exhibits anti-inflammatory, anti-apoptotic, and antioxidant action against sepsis harm, highlighting naringin's promising effects in septic settings. Naringin could be employed as a treatment against sepsis, based on studies on combination therapy, synergistic effects, and toxicological investigation that show no reported severe side effects. CONCLUSION: Naringin might be a promising therapeutic approach for preventing sepsis-induced multiple organ failure. Naringin should be used alongside other therapeutic therapies with caution despite its great therapeutic potential and lower toxicity. Nonetheless, clinical studies are required to comprehend the therapeutic benefits of naringin against sepsis.


Subject(s)
Flavanones , Multiple Organ Failure , Sepsis , Flavanones/pharmacology , Sepsis/drug therapy , Sepsis/complications , Humans , Animals , Multiple Organ Failure/drug therapy , Signal Transduction/drug effects , Citrus/chemistry
3.
Mol Neurobiol ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760620

ABSTRACT

Transient receptor potential vanilloid subfamily member 1 (TRPV1) has been strongly implicated in the pathophysiology of cerebral stroke. However, the exact role and mechanism remain elusive. TPRV1 channels are exclusively present in the neurovascular system and involve many neuronal processes. Numerous experimental investigations have demonstrated that TRPV1 channel blockers or the lack of TRPV1 channels may prevent harmful inflammatory responses during ischemia-reperfusion injury, hence conferring neuroprotection. However, TRPV1 agonists such as capsaicin and some other non-specific TRPV1 activators may induce transient/slight degree of TRPV1 channel activation to confer neuroprotection through a variety of mechanisms, including hypothermia induction, improving vascular functions, inducing autophagy, preventing neuronal death, improving memory deficits, and inhibiting inflammation. Another factor in capsaicin-mediated neuroprotection could be the desensitization of TRPV1 channels. Based on the summarized evidence, it may be plausible to suggest that TPRV1 channels have a dual role in ischemia-reperfusion-induced cerebral injury, and thus, both agonists and antagonists may produce neuroprotection depending upon the dose and duration. The current review summarizes the dual function of TRPV1 in ischemia-reperfusion-induced cerebral injury models, explains its mechanism, and predicts the future.

4.
Eur J Pharmacol ; 946: 175648, 2023 May 05.
Article in English | MEDLINE | ID: mdl-36894049

ABSTRACT

Depression is the most common mental health disorder worldwide; however, the exact cellular and molecular mechanisms of this major depressive disorder are unclear so far. Experimental studies have demonstrated that depression is associated with significant cognitive impairment, dendrite spine loss, and reduction in connectivity among neurons that contribute to symptoms associated with mood disorders. Rho/Rho-associated coiled-coil containing protein kinase (ROCK) receptors are exclusively expressed in the brain and Rho/ROCK signaling has gained considerable attention as it plays a crucial role in the development of neuronal architecture and structural plasticity. Chronic stress-induced activation of the Rho/ROCK signaling pathway promotes neuronal apoptosis and loss of neural processes and synapses. Interestingly, accumulated evidence has identified Rho/ROCK signaling pathways as a putative target for treating neurological disorders. Furthermore, inhibition of the Rho/ROCK signaling pathway has proven to be effective in different models of depression, which signify the potential benefits of clinical Rho/ROCK inhibition. The ROCK inhibitors extensively modulate antidepressant-related pathways which significantly control the synthesis of proteins, and neuron survival and ultimately led to the enhancement of synaptogenesis, connectivity, and improvement in behavior. Therefore, the present review refines the prevailing contribution of this signaling pathway in depression and highlighted preclinical shreds of evidence for employing ROCK inhibitors as disease-modifying targets along with possible underlying mechanisms in stress-associated depression.


Subject(s)
Depressive Disorder, Major , Nervous System Diseases , Humans , Depression/drug therapy , Neurons , Signal Transduction , rho-Associated Kinases
5.
Behav Brain Res ; 443: 114347, 2023 04 12.
Article in English | MEDLINE | ID: mdl-36791962

ABSTRACT

Post-Traumatic Stress Disorder (PTSD) is a chronic condition that occurs in response to a traumatic event, and consequently, enhances the threat sensitivity. Rho/ROCK signaling has been implicated in the consolidation of fear memory, stress, depression, anxiety, and traumatic brain injury. However, its role in post-traumatic stress disorder remains elusive. Therefore, the present study was designed to explore the role of fasudil, a Rho/ROCK inhibitor, a mouse model of PTSD. Mice were subjected to underwater trauma stress followed by three situational reminders. Underwater trauma (UWT) significantly increased the freezing behavior, a marker of the formation of aversive memory, in response to situational reminders on the 3rd, 7th, and 14th days, suggesting the significant development of PTSD. Trauma and situational reminders were also associated with significant changes in behavioral parameters in open field, social interaction and actophotometer tests, along with a reduction in serum corticosterone levels. Fasudil (10 and 15 mg/kg) and sertraline (15 mg/kg), a standard drug for PTSD, significantly decreased the freezing behaviour in response to situational reminders, suggesting the inhibition of the formation of aversive fear memory. However, fasudil and sertraline did not modulate normal memory functions, as assessed on elevated plus maze test, before subjecting mice to traumatic stress. Treatment with fasudil and sertraline significantly restored the behavioral changes and normalized the corticosterone levels. Fasudil-mediated blockade of the Rho/ROCK pathway may be responsible for blocking the formation of aversive memory during the traumatic event, which may be manifested in form of decreased contextual fear response during situational reminders.


Subject(s)
Stress Disorders, Post-Traumatic , Mice , Animals , Stress Disorders, Post-Traumatic/drug therapy , Sertraline/therapeutic use , Corticosterone , Anxiety , Disease Models, Animal
6.
Fundam Clin Pharmacol ; 37(3): 607-617, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36647295

ABSTRACT

Sepsis-induced myocardial injury is a consequence of septicemia and is one of the major causes of death in intensive care units. A serum glycoprotein called fetuin-A is secreted largely by the liver, tongue, placenta, and adipose tissue. Fetuin-A has a variety of biological and pharmacological properties. The anti-inflammatory and antioxidant glycoprotein fetuin-A has shown its efficacy in a number of inflammatory disorders including sepsis. However, its protective role against sepsis-induced myocardial injury remains elusive. The purpose of this work is to explore the role of fetuin-A in mouse models of myocardial injury brought on by cecal ligation and puncture (CLP). CLP significantly induced the myocardial injury assessed in terms of elevated myocardial markers (serum CK-MB, cTnI levels), inflammatory markers (IL-6, TNF-α) in the serum, and oxidative stress markers (increased MDA levels and decreased reduced glutathione) in heart tissue homogenate following 24 h of ligation and puncture. Further, hematoxylin and eosin (H&E) staining showed considerable histological alterations in the myocardial tissue of sepsis-developed mice. Interestingly, fetuin-A pretreatment (50 and 100 mg/kg) for 4 days before the CLP procedure significantly improved the myocardial injury and was evaluated in perspective of a reduction in the CK-MB, cTnI levels, IL-6, and TNF-α in sepsis-developed animals. Fetuin-A pretreatment significantly attenuated the oxidative stress and improved the myocardial morphology in a dose-dependent manner. The present study provides preliminary evidence that fetuin-A exerts protection against sepsis-induced cardiac dysfunction in vivo via suppression of inflammation and oxidative damage.


Subject(s)
Sepsis , alpha-2-HS-Glycoprotein , Animals , Mice , alpha-2-HS-Glycoprotein/therapeutic use , Disease Models, Animal , Inflammation/drug therapy , Inflammation/prevention & control , Interleukin-6 , Oxidative Stress , Sepsis/complications , Sepsis/drug therapy , Tumor Necrosis Factor-alpha
SELECTION OF CITATIONS
SEARCH DETAIL