Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Metab Brain Dis ; 39(4): 625-633, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38416338

ABSTRACT

Selenium-containing agents showed novel anticancer activity by triggering pro-oxidative mechanism. Studies confirmed that methylseleninic acid (MeSe) displayed broad-spectrum anti-tumor activity against kinds of human cancers. However, the anticancer effects and mechanism of MeSe against human glioma growth have not been explored yet. Herein, the present study showed that MeSeA dose-dependently inhibited U251 and U87 human glioma cells growth in vitro. Flow cytometry analysis indicated that MeSe induced significant U251 cells apoptosis with a dose-dependent manner, followed by the activation of caspase-7, caspase-9 and caspase-3. Immunofluorescence staining revealed that MeSe time-dependently caused reactive oxide species (ROS) accumulation and subsequently resulted in oxidative damage, as convinced by the increased phosphorylation level of Ser428-ATR, Ser1981-ATM, Ser15-p53 and Ser139-histone. ROS inhibition by glutathione (GSH) effectively attenuated MeSe-induced ROS generation, oxidative damage, caspase-3 activation and cytotoxicity, indicating that ROS was an upstream factor involved in MeSe-mediated anticancer mechanism in glioma. Importantly, MeSe administration in nude mice significantly inhibited glioma growth in vivo by inducing apoptosis through triggering oxidative damage. Taken together, our findings validated the possibility that MeSe as a selenium-containing can act as potential tumor chemotherapy agent for therapy of human glioma.


Subject(s)
Apoptosis , Glioma , Mice, Nude , Organoselenium Compounds , Oxidative Stress , Reactive Oxygen Species , Humans , Glioma/drug therapy , Glioma/metabolism , Glioma/pathology , Apoptosis/drug effects , Organoselenium Compounds/pharmacology , Organoselenium Compounds/therapeutic use , Animals , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Oxidative Stress/drug effects , Mice , Antineoplastic Agents/pharmacology , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Xenograft Model Antitumor Assays , Cell Proliferation/drug effects , Mice, Inbred BALB C
2.
Sci Rep ; 7(1): 13326, 2017 10 17.
Article in English | MEDLINE | ID: mdl-29042589

ABSTRACT

A recent genome-wide association study (GWAS) identified four genetic variants rs78726293, rs191260602, rs17035816 and rs7688285 in GLRB gene to be associated with panic disorder (PD) risk. In fact, GWAS is an important first step to investigate the genetics of human complex diseases. In order to translate into opportunities for new diagnostics and therapies, we must identify the genes perturbed by these four variants, and understand how these variant functionally contributes to the underlying disease pathogenesis. Here, we investigated the effect of these four genetic variants and the expression of three nearby genes including PDGFC, GLRB and GRIA2 in human brain tissues using the GTEx (version 6) and Braineac eQTLs datasets. In GTEx (version 6) dataset, the results showed that both rs17035816 and rs7688285 variants could significantly regulate PDGFC and GLRB gene expression. In Braineac dataset, the results showed that rs17035816 variant could significantly regulate GLRB and GRIA2 gene expression. We believe that these findings further provide important supplementary information about the regulating mechanisms of rs17035816 and rs7688285 variants in PD risk.


Subject(s)
Brain/metabolism , Gene Expression Regulation , Genetic Variation , Receptors, Glycine/genetics , Databases, Genetic , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Panic Disorder/genetics , Quantitative Trait Loci , Receptors, Glycine/metabolism
3.
Psychopharmacology (Berl) ; 234(16): 2409-2419, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28477089

ABSTRACT

RATIONALE: Alcohol use disorders have become one of the most damaging psychiatric disorders in the world; however, there are no ideal treatments in clinic. Phosphodiesterase-4 (PDE4), an enzyme that specifically hydrolyzes intracellular cyclic AMP (cAMP), has been involved in alcohol use disorders. Roflumilast is the first PDE4 inhibitor approved for treatment of chronic obstructive pulmonary diseases in clinic. It was of particular interest to researchers to determine whether roflumilast altered ethanol consumption. OBJECTIVES: The present study tried to determine the effects of roflumilast on ethanol intake and preference. METHODS: We used the two-bottle choice paradigm to assess ethanol intake and preference in C57BL/6J mice treated with roflumilast (1, 3, or 10 mg/kg) or rolipram (0.5 mg/kg; positive control). The effect of roflumilast was verified using the ethanol drinking-in-dark (DID) test. Locomotor activity was examined using the open-field test. Intake of sucrose or quinine was also tested to determine whether natural reward preference and aversive stimuli were involved in the effect of PDE4 inhibitors. RESULTS: Similar to rolipram, roflumilast decreased ethanol intake and preference in two-bottle choice and DID tests in a dose-dependent manner, with significant changes at the dose of 10 mg/kg; in contrast, roflumilast did not affect sucrose or quinine drinking, although it decreased locomotor activity at the high dose within 3 h of treatment. CONCLUSIONS: These data provide novel demonstration for the effect of roflumilast on ethanol consumption and suggest that roflumilast may be beneficial for treatment of alcoholism.


Subject(s)
Alcohol Drinking , Aminopyridines/pharmacology , Benzamides/pharmacology , Ethanol/administration & dosage , Phosphodiesterase 4 Inhibitors/pharmacology , Animals , Cyclic Nucleotide Phosphodiesterases, Type 4 , Cyclopropanes/pharmacology , Male , Mice , Mice, Inbred C57BL , Motor Activity/drug effects , Rolipram/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL