Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
2.
Nat Immunol ; 25(7): 1183-1192, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38872000

ABSTRACT

Natural killer (NK) cells function by eliminating virus-infected or tumor cells. Here we identified an NK-lineage-biased progenitor population, referred to as early NK progenitors (ENKPs), which developed into NK cells independently of common precursors for innate lymphoid cells (ILCPs). ENKP-derived NK cells (ENKP_NK cells) and ILCP-derived NK cells (ILCP_NK cells) were transcriptionally different. We devised combinations of surface markers that identified highly enriched ENKP_NK and ILCP_NK cell populations in wild-type mice. Furthermore, Ly49H+ NK cells that responded to mouse cytomegalovirus infection primarily developed from ENKPs, whereas ILCP_NK cells were better IFNγ producers after infection with Salmonella and herpes simplex virus. Human CD56dim and CD56bright NK cells were transcriptionally similar to ENKP_NK cells and ILCP_NK cells, respectively. Our findings establish the existence of two pathways of NK cell development that generate functionally distinct NK cell subsets in mice and further suggest these pathways may be conserved in humans.


Subject(s)
Cell Differentiation , Killer Cells, Natural , Killer Cells, Natural/immunology , Animals , Mice , Humans , Cell Differentiation/immunology , Mice, Inbred C57BL , Immunity, Innate , CD56 Antigen/metabolism , Muromegalovirus/immunology , Cell Lineage/immunology , Interferon-gamma/metabolism , Interferon-gamma/immunology , Lymphoid Progenitor Cells/metabolism , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/immunology , Mice, Knockout , Cells, Cultured
3.
Nat Immunol ; 25(5): 802-819, 2024 May.
Article in English | MEDLINE | ID: mdl-38684922

ABSTRACT

Sepsis induces immune alterations, which last for months after the resolution of illness. The effect of this immunological reprogramming on the risk of developing cancer is unclear. Here we use a national claims database to show that sepsis survivors had a lower cumulative incidence of cancers than matched nonsevere infection survivors. We identify a chemokine network released from sepsis-trained resident macrophages that triggers tissue residency of T cells via CCR2 and CXCR6 stimulations as the immune mechanism responsible for this decreased risk of de novo tumor development after sepsis cure. While nonseptic inflammation does not provoke this network, laminarin injection could therapeutically reproduce the protective sepsis effect. This chemokine network and CXCR6 tissue-resident T cell accumulation were detected in humans with sepsis and were associated with prolonged survival in humans with cancer. These findings identify a therapeutically relevant antitumor consequence of sepsis-induced trained immunity.


Subject(s)
Macrophages , Neoplasms , Sepsis , Humans , Sepsis/immunology , Macrophages/immunology , Female , Neoplasms/immunology , Neoplasms/therapy , Male , Receptors, CXCR6/metabolism , Animals , T-Lymphocytes/immunology , Receptors, CCR2/metabolism , Middle Aged , Mice , Aged , Chemokines/metabolism , Adult
4.
Immunity ; 57(5): 1019-1036.e9, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38677292

ABSTRACT

Group 3 innate lymphoid cells (ILC3) are the major subset of gut-resident ILC with essential roles in infections and tissue repair, but how they adapt to the gut environment to maintain tissue residency is unclear. We report that Tox2 is critical for gut ILC3 maintenance and function. Gut ILC3 highly expressed Tox2, and depletion of Tox2 markedly decreased ILC3 in gut but not at central sites, resulting in defective control of Citrobacter rodentium infection. Single-cell transcriptional profiling revealed decreased expression of Hexokinase-2 in Tox2-deficient gut ILC3. Consistent with the requirement for hexokinases in glycolysis, Tox2-/- ILC3 displayed decreased ability to utilize glycolysis for protein translation. Ectopic expression of Hexokinase-2 rescued Tox2-/- gut ILC3 defects. Hypoxia and interleukin (IL)-17A each induced Tox2 expression in ILC3, suggesting a mechanism by which ILC3 adjusts to fluctuating environments by programming glycolytic metabolism. Our results reveal the requirement for Tox2 to support the metabolic adaptation of ILC3 within the gastrointestinal tract.


Subject(s)
Citrobacter rodentium , Enterobacteriaceae Infections , Glycolysis , HMGB Proteins , Immunity, Innate , Lymphocytes , Mice, Knockout , Animals , Mice , Adaptation, Physiological/immunology , Citrobacter rodentium/immunology , Enterobacteriaceae Infections/immunology , Gastrointestinal Tract/immunology , Gastrointestinal Tract/metabolism , Hexokinase/metabolism , Hexokinase/genetics , Interleukin-17/metabolism , Lymphocytes/immunology , Lymphocytes/metabolism , Mice, Inbred C57BL , Trans-Activators/metabolism , Trans-Activators/genetics , HMGB Proteins/genetics , HMGB Proteins/immunology , HMGB Proteins/metabolism
5.
bioRxiv ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38496468

ABSTRACT

The lung-resident immune mechanisms driving resolution of SARS-CoV-2 infection in humans remain elusive. Using mice co-engrafted with a genetically matched human immune system and fetal lung xenograft (fLX), we mapped the immunological events defining resolution of SARS-CoV-2 infection in human lung tissues. Viral infection is rapidly cleared from fLX following a peak of viral replication. Acute replication results in the emergence of cell subsets enriched in viral RNA, including extravascular inflammatory monocytes (iMO) and macrophage-like T-cells, which dissipate upon infection resolution. iMO display robust antiviral responses, are transcriptomically unique among myeloid lineages, and their emergence associates with the recruitment of circulating CD4+ monocytes. Consistently, mice depleted for human CD4+ cells but not CD3+ T-cells failed to robustly clear infectious viruses and displayed signatures of chronic infection. Our findings uncover the transient differentiation of extravascular iMO from CD4+ monocytes as a major hallmark of SARS-CoV-2 infection resolution and open avenues for unravelling viral and host adaptations defining persistently active SARS-CoV-2 infection.

6.
J Immunol ; 210(11): 1728-1739, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37074186

ABSTRACT

Posttranslational modification, such as phosphorylation, is an important biological event that modulates and diversifies protein function. Bcl11b protein is a zinc-finger transcription factor that plays a crucial role in early T cell development and the segregation of T cell subsets. Bcl11b possesses at least 25 serine/threonine (S/T) residues that can be phosphorylated upon TCR stimulation. To understand the physiological relevance of the phosphorylation on Bcl11b protein, we replaced S/T residues with alanine (A) by targeting murine Bcl11b gene in embryonic stem cells. By combinational targeting of exons 2 and 4 in the Bcl11b gene, we generated a mouse strain, Bcl11b-phosphorylation site mutation mice, in which 23 S/T residues were replaced with A residues. Such extensive manipulation left only five putative phosphorylated residues, two of which were specific for mutant protein, and resulted in reduced amounts of Bcl11b protein. However, primary T cell development in the thymus, as well as the maintenance of peripheral T cells, remained intact even after loss of major physiological phosphorylation. In addition, in vitro differentiation of CD4+ naive T cells into effector Th cell subsets-Th1, Th2, Th17, and regulatory T-was comparable between wild-type and Bcl11b-phosphorylation site mutation mice. These findings indicate that the physiological phosphorylation on major 23 S/T residues in Bcl11b is dispensable for Bcl11b functions in early T cell development and effector Th cell differentiation.


Subject(s)
Repressor Proteins , Tumor Suppressor Proteins , Animals , Mice , Phosphorylation , Repressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Differentiation , Protein Processing, Post-Translational , Serine/genetics , Serine/metabolism , Threonine/genetics , Threonine/metabolism
7.
Methods Mol Biol ; 2580: 51-69, 2023.
Article in English | MEDLINE | ID: mdl-36374450

ABSTRACT

Innate lymphoid cells (ILCs) are transcriptionally and functionally similar to T cells but lack adaptive antigen receptors. They play critical roles in early defense against pathogens. In this review, we summarize recent discoveries of ILC progenitors and discuss possible mechanisms that separate ILCs from T cells. We consider mechanisms of lineage specification in early ILC development and also examine whether differences exist between adult and fetal ILC development.


Subject(s)
Immunity, Innate , Lymphocytes , T-Lymphocytes
8.
Methods Mol Biol ; 2580: 211-232, 2023.
Article in English | MEDLINE | ID: mdl-36374460

ABSTRACT

T cells and innate lymphoid cells (ILCs) share expression of many key transcription factors during development and at mature stage, resulting in striking functional similarities between these lineages. Taking into account ILC contribution is thus necessary to appreciate T cell functions during immune responses. Furthermore, understanding ILC development and functions helps to understand T cells. Here we provide methods and protocols to isolate pure populations of multipotent precursors to T cells and innate lymphoid cells (ILCs) from adult mouse bone marrow, using flow cytometric sorting. These include precursors to all lymphocytes (viz., LMPPs and ALPs) and multipotent precursors to ILCs that have been recently refined (viz., specified EILPs, committed EILPs, and ILCPs).


Subject(s)
Lymphocytes , T-Lymphocytes , Mice , Animals , Immunity, Innate , Bone Marrow , Lymphoid Progenitor Cells/metabolism , Cell Differentiation
9.
Immunity ; 55(8): 1402-1413.e4, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35882235

ABSTRACT

The differentiation of innate lymphoid cells (ILCs) from hematopoietic stem cells needs to go through several multipotent progenitor stages. However, it remains unclear whether the fates of multipotent progenitors are predefined by epigenetic states. Here, we report the identification of distinct accessible chromatin regions in all lymphoid progenitors (ALPs), EILPs, and ILC precursors (ILCPs). Single-cell MNase-seq analyses revealed that EILPs contained distinct subpopulations epigenetically primed toward either dendritic cell lineages or ILC lineages. We found that TCF-1 and GATA3 co-bound to the lineage-defining sites for ILCs (LDS-Is), whereas PU.1 binding was enriched in the LDSs for alternative dendritic cells (LDS-As). TCF-1 and GATA3 were indispensable for the epigenetic priming of LDSs at the EILP stage. Our results suggest that the multipotency of progenitor cells is defined by the existence of a heterogeneous population of cells epigenetically primed for distinct downstream lineages, which are regulated by key transcription factors.


Subject(s)
Immunity, Innate , Lymphocytes , Cell Differentiation , Cell Lineage , Epigenesis, Genetic , Hematopoietic Stem Cells
10.
J Immunol ; 209(2): 217-225, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35821101

ABSTRACT

Innate-like T cells display characteristics of both innate lymphoid cells (ILCs) and mainstream αß T cells, leading to overlapping functions of innate-like T cells with both subsets. In this review, we show that although innate-like T cells are probably present in all vertebrates, their main characteristics are much better known in amphibians and mammals. Innate-like T cells encompass both γδ and αß T cells. In mammals, γδ TCRs likely coevolved with molecules of the butyrophilin family they interact with, whereas the semi-invariant TCRs of iNKT and mucosal-associated invariant T cells are evolutionarily locked with their restricting MH1b molecules, CD1d and MR1, respectively. The strong conservation of the Ag recognition systems of innate-like T cell subsets despite similar effector potentialities supports that each one fulfills nonredundant roles related to their Ag specificity.


Subject(s)
Mucosal-Associated Invariant T Cells , Animals , Immunity, Innate , Lymphocyte Count , Mammals , Receptors, Antigen, T-Cell , T-Lymphocyte Subsets
11.
Mol Cell ; 82(18): 3398-3411.e11, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35863348

ABSTRACT

Regulatory elements activate promoters by recruiting transcription factors (TFs) to specific motifs. Notably, TF-DNA interactions often depend on cooperativity with colocalized partners, suggesting an underlying cis-regulatory syntax. To explore TF cooperativity in mammals, we analyze ∼500 mouse and human primary cells by combining an atlas of TF motifs, footprints, ChIP-seq, transcriptomes, and accessibility. We uncover two TF groups that colocalize with most expressed factors, forming stripes in hierarchical clustering maps. The first group includes lineage-determining factors that occupy DNA elements broadly, consistent with their key role in tissue-specific transcription. The second one, dubbed universal stripe factors (USFs), comprises ∼30 SP, KLF, EGR, and ZBTB family members that recognize overlapping GC-rich sequences in all tissues analyzed. Knockouts and single-molecule tracking reveal that USFs impart accessibility to colocalized partners and increase their residence time. Mammalian cells have thus evolved a TF superfamily with overlapping DNA binding that facilitate chromatin accessibility.


Subject(s)
Chromatin , Transcription Factors , Animals , Binding Sites , Chromatin/genetics , DNA/genetics , Humans , Mammals/genetics , Mammals/metabolism , Mice , Mice, Knockout , Protein Binding , Transcription Factors/metabolism
12.
Adv Exp Med Biol ; 1365: 7-24, 2022.
Article in English | MEDLINE | ID: mdl-35567738

ABSTRACT

Innate lymphoid cells (ILCs) are a family of immune cells that possess similar functions as T cells. We review steps of central ILC development in the bone marrow of adult mice and discuss recent evidence for peripheral ILC development suggesting extramedullary sites of ILC development. We also assess the contribution of development during different phases of life towards shaping the composition of the adult ILC pool. Finally, we briefly review the local cues that lead to heterogeneity of ILCs between tissues. We propose that tissue-resident ILC progenitors may economically allow tissues to elicit rapid expansion of specific ILC types that are needed based on the nature of antigenic assaults in tissues.


Subject(s)
Immunity, Innate , Lymphocytes , Animals , Bone Marrow , Cell Differentiation , Mice , T-Lymphocytes
13.
Front Immunol ; 13: 1066336, 2022.
Article in English | MEDLINE | ID: mdl-36741364

ABSTRACT

Despite significant advances, the eradication of cancer remains a clinical challenge which justifies the urgent exploration of additional therapeutic strategies such as immunotherapies. Human peripheral Vγ9Vδ2 T cells represent an attractive candidate subset for designing safe, feasible and effective adoptive T cell transfer-based therapies. However, following their infiltration within tumors, γδ T cells are exposed to various regulating constituents and signals from the tumor microenvironment (TME), which severely alter their antitumor functions. Here, we show that TGF-ß, whose elevated production in some solid tumors is linked to a poor prognosis, interferes with the antigenic activation of human Vγ9Vδ2 T cells in vitro. This regulatory cytokine strongly impairs their cytolytic activity, which is accompanied by the induction of particular phenotypic, transcriptomic and metabolic changes. Collectively, these observations provide information for better understanding and targeting the impact of TME components to regulate the antitumor activity of human T cell effectors.


Subject(s)
Neoplasms , Transforming Growth Factor beta , Humans , Transcriptome , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocytes , Neoplasms/genetics , Neoplasms/therapy , Phenotype , Tumor Microenvironment
14.
Sci Immunol ; 6(61)2021 07 30.
Article in English | MEDLINE | ID: mdl-34330813

ABSTRACT

Human γδ T cells contribute to tissue homeostasis and participate in epithelial stress surveillance through mechanisms that are not well understood. Here, we identified ephrin type-A receptor 2 (EphA2) as a stress antigen recognized by a human Vγ9Vδ1 TCR. EphA2 is recognized coordinately by ephrin A to enable γδ TCR activation. We identified a putative TCR binding site on the ligand-binding domain of EphA2 that was distinct from the ephrin A binding site. Expression of EphA2 was up-regulated upon AMP-activated protein kinase (AMPK)-dependent metabolic reprogramming of cancer cells, and coexpression of EphA2 and active AMPK in tumors was associated with higher CD3 T cell infiltration in human colorectal cancer tissue. These results highlight the potential of the human γδ TCR to cooperate with a co-receptor to recognize non-MHC-encoded proteins as signals of cellular dysregulation, potentially allowing γδ T cells to sense metabolic energy changes associated with either viral infection or cancer.


Subject(s)
AMP-Activated Protein Kinases/immunology , Antigens/immunology , Intraepithelial Lymphocytes/immunology , Neoplasms/immunology , Receptor, EphA2/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , AMP-Activated Protein Kinases/genetics , Animals , Antibodies, Monoclonal/immunology , Cell Line , Humans , Mice, Knockout , Receptors, Antigen, T-Cell, gamma-delta/genetics
15.
Cell Rep ; 34(5): 108716, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33535043

ABSTRACT

TCF1 plays a critical role in T lineage commitment and the development of αß lineage T cells, but its role in γδ T cell development remains poorly understood. Here, we reveal a regulatory axis where T cell receptor (TCR) signaling controls TCF1 expression through an E-protein-bound regulatory element in the Tcf7 locus, and this axis regulates both γδ T lineage commitment and effector fate. Indeed, the level of TCF1 expression plays an important role in setting the threshold for γδ T lineage commitment and modulates the ability of TCR signaling to influence effector fate adoption by γδ T lineage progenitors. This finding provides mechanistic insight into how TCR-mediated repression of E proteins promotes the development of γδ T cells and their adoption of the interleukin (IL)-17-producing effector fate. IL-17-producing γδ T cells have been implicated in cancer progression and in the pathogenesis of psoriasis and multiple sclerosis.


Subject(s)
Hepatocyte Nuclear Factor 1-alpha/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Animals , Cell Differentiation , Humans , Mice , Models, Immunological , Signal Transduction
16.
Sci Immunol ; 6(55)2021 01 15.
Article in English | MEDLINE | ID: mdl-33452106

ABSTRACT

The developmental origins of memory T cells remain incompletely understood. During the expansion phase of acute viral infection, we identified a distinct subset of virus-specific CD8+ T cells that possessed distinct characteristics including expression of CD62L, T cell factor 1 (TCF-1), and Eomesodermin; relative quiescence; expression of activation markers; and features of limited effector differentiation. These cells were a quantitatively minor subpopulation of the TCF-1+ pool and exhibited self-renewal, heightened DNA damage surveillance activity, and preferential long-term recall capacity. Despite features of memory and somewhat restrained proliferation during the expansion phase, this subset displayed evidence of stronger TCR signaling than other responding CD8+ T cells, coupled with elevated expression of multiple inhibitory receptors including programmed cell death 1 (PD-1), lymphocyte activating gene 3 (LAG-3), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), CD5, and CD160. Genetic ablation of PD-1 and LAG-3 compromised the formation of this CD62Lhi TCF-1+ subset and subsequent CD8+ T cell memory. Although central memory phenotype CD8+ T cells were formed in the absence of these cells, subsequent memory CD8+ T cell recall responses were compromised. Together, these results identify an important link between genome integrity maintenance and CD8+ T cell memory. Moreover, the data indicate a role for inhibitory receptors in preserving key memory CD8+ T cell precursors during initial activation and differentiation. Identification of this rare subpopulation within the memory CD8+ T cell precursor pool may help reconcile models of the developmental origin of long-term CD8+ T cell memory.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Listeriosis/immunology , Lymphocytic Choriomeningitis/immunology , Memory T Cells/immunology , Precursor Cells, T-Lymphoid/immunology , Animals , Antigens, CD/genetics , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation/genetics , Cell Differentiation/immunology , DNA Damage/immunology , Disease Models, Animal , Female , Hepatocyte Nuclear Factor 1-alpha/metabolism , Humans , Immunologic Memory/genetics , Listeria monocytogenes/immunology , Listeriosis/microbiology , Lymphocyte Activation , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/immunology , Male , Memory T Cells/metabolism , Mice , Mice, Knockout , Precursor Cells, T-Lymphoid/metabolism , Programmed Cell Death 1 Receptor/genetics , Lymphocyte Activation Gene 3 Protein
17.
Immunol Rev ; 298(1): 117-133, 2020 11.
Article in English | MEDLINE | ID: mdl-32965719

ABSTRACT

Despite recent significant progress in cancer immunotherapies based on adoptive cell transfer(s)(ACT), the eradication of cancers still represents a major clinical challenge. In particular, the efficacy of current ACT-based therapies against solid tumors is dramatically reduced by physical barriers that prevent tumor infiltration of adoptively transferred effectors, and the tumor environment that suppress their anti-tumor functions. Novel immunotherapeutic strategies are thus needed to circumvent these issues. Human peripheral blood Vγ9Vδ2 T cells, a non-alloreactive innate-like T lymphocyte subset, recently proved to be a promising anti-tumor effector subset for ACT-based immunotherapies. Furthermore, new cell engineering tools that leverage the potential of CRISPR/Cas technology open astounding opportunities to optimize their anti-tumor effector functions. In this review, we present the current ACT strategies based on engineered T cells and their limitations. We then discuss the potential of engineered Vγ9Vδ2 T cell to overcome these limitations and improve ACT-based cancer immunotherapies.


Subject(s)
Immunotherapy, Adoptive , Neoplasms , Humans , Neoplasms/therapy , Receptors, Antigen, T-Cell, gamma-delta/genetics , T-Lymphocyte Subsets
18.
Front Immunol ; 11: 470, 2020.
Article in English | MEDLINE | ID: mdl-32265924

ABSTRACT

The transcription factor TCF-1 (encoded by Tcf7) plays critical roles in several lineages of hematopoietic cells. In this study, we examined the molecular basis for Tcf7 regulation in T cells, innate lymphoid cells, and migratory conventional dendritic cells that we find express Tcf7. We identified a 1 kb regulatory element crucial for the initiation of Tcf7 expression in T cells and innate lymphoid cells, but dispensable for Tcf7 expression in Tcf7-expressing dendritic cells. Within this region, we identified a Notch binding site important for the initiation of Tcf7 expression in T cells but not in innate lymphoid cells. Our work establishes that the same regulatory element is used by distinct transcriptional controllers to initiate Tcf7 expression in T cells and ILCs.


Subject(s)
Hepatocyte Nuclear Factor 1-alpha/metabolism , Lymphocytes/immunology , Regulatory Elements, Transcriptional/genetics , T-Lymphocytes/physiology , Animals , Cell Differentiation , Cells, Cultured , Gene Expression Regulation , Hepatocyte Nuclear Factor 1-alpha/genetics , Immunity, Innate , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout
19.
J Exp Med ; 217(1)2020 01 06.
Article in English | MEDLINE | ID: mdl-31828302

ABSTRACT

In this issue of JEM, Hosokawa et al. (https://doi.org/10.1084/jem.20190972) establish that transcription factor Bcl11b regulates almost completely distinct sets of genes in T cell precursors and ILC2s. To understand how this occurs, they identify multiple levels of functional regulation for Bcl11b that are used differently by T cell precursors and ILC2s.


Subject(s)
Immunity, Innate , Lymphocytes , Repressor Proteins , Transcription Factors , Tumor Suppressor Proteins
20.
Nat Commun ; 10(1): 5498, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31792212

ABSTRACT

Interactions between thymic epithelial cells (TEC) and developing thymocytes are essential for T cell development, but molecular insights on TEC and thymus homeostasis are still lacking. Here we identify distinct transcriptional programs of TEC that account for their age-specific properties, including proliferation rates, engraftability and function. Further analyses identify Myc as a regulator of fetal thymus development to support the rapid increase of thymus size during fetal life. Enforced Myc expression in TEC induces the prolonged maintenance of a fetal-specific transcriptional program, which in turn extends the growth phase of the thymus and enhances thymic output; meanwhile, inducible expression of Myc in adult TEC similarly promotes thymic growth. Mechanistically, this Myc function is associated with enhanced ribosomal biogenesis in TEC. Our study thus identifies age-specific transcriptional programs in TEC, and establishes that Myc controls thymus size.


Subject(s)
Epithelial Cells/metabolism , Oncogene Protein p55(v-myc)/metabolism , Thymus Gland/embryology , Transcription, Genetic , Animals , Epithelial Cells/cytology , Female , Gene Expression Regulation, Developmental , Humans , Male , Mice , Mice, Transgenic , Oncogene Protein p55(v-myc)/genetics , Organ Size , Organogenesis , Thymus Gland/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL