Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(30): 75925-75942, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37231129

ABSTRACT

Surabaya is one of the big coastal cities in Indonesia with rapid municipal development. Thus, the investigation on the metal's geochemical speciation in the coastal sediment is required to assess the environmental quality by studying their mobility, bioavailability, and toxicity. This study is aimed at evaluating the condition of the Surabaya coast by assessing copper and nickel fractionations and total concentrations of both metals in sediments. Environmental assessments were performed by using geo-accumulation index (Igeo), contamination factor (CF), and pollution load index (PLI) for existing total heavy metal data and by using individual contamination factor (ICF) and risk assessment code (RAC) for metal fractionations. Copper speciation was observed geochemically in the fraction order of residual (9.21 - 40.08 mg/kg) > reducible (2.33 - 11.98 mg/kg) > oxidizable (0.75 - 22.71 mg/kg) > exchangeable (0.40 - 2.06 mg/kg), while the detected fraction order of nickel was residual (5.16 - 13.88 mg/kg) > exchangeable (2.33 - 5.95 mg/kg) > reducible (1.42 - 4.74 mg/kg) > oxidizable (1.62 - 3.88 mg/kg). Different fraction levels were found for nickel speciation wherein its exchangeable fraction was higher than copper, even though the residual fraction was dominant for both copper and nickel. The total metal concentrations of copper and nickel were found in the range of 13.5 - 66.1 mg/kg dry weight and 12.7 - 24.7 mg/kg dry weight, respectively. Despite the fact that almost all index values are detected low through total metal assessment, the port area is indicated to be in the moderate contamination category for copper. Through the assessment of metal fractionation, copper is classified into the low contamination and low-risk category, while nickel is categorized into the moderate contamination level and medium risk to the aquatic environment. Although the coast of Surabaya generally remains in the safe category for living habitat, certain sites had relatively high metal concentrations estimated to have originated from anthropogenic activities.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Nickel/analysis , Copper/analysis , Indonesia , Water Pollutants, Chemical/analysis , Geologic Sediments , Environmental Monitoring , Metals, Heavy/analysis , Risk Assessment
2.
Environ Monit Assess ; 193(11): 705, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34623520

ABSTRACT

Trace metals are vital to primary productivity and play an essential role as main components in regulating oceanic biogeochemical cycles. Dissolved and particulate trace metals within the water column may vary due to primary production, temperature, and nutrient changes, factors that may also vary spatially and temporally. Furthermore, assessment of trace metals mainly relies on in situ observation, and so wide-area investigation of trace-metal concentration may be challenging and subject to technical constraints. A specific approach is therefore necessary that combines biogeochemical proxies, satellite data, and trace-metal linear correlation. This study aims to assess the potential spatio-temporal variability of sea surface cadmium (Cd) and copper (Cu) concentrations in Indonesian seas and surrounding areas. The correlations of Cd and Cu concentrations with primary production and nutrient data were used to convert hindcast satellite data into estimates of the metals' concentrations. The potential variability of trace metals can be determined by overlaying both data. Indonesia's Fisheries Management Areas (FMAs) were used for data clustering and analysis. The results show that Cd and Cu trace metals have similar distribution patterns throughout the year. However, dissolved Cu has a more diverse coverage area than dissolved Cd, including within the Halmahera, Seram, and Maluku Seas (FMAs 716 and 717), the Makassar Strait (FMA 717), and the Java-Sumatra upwelling area (FMA 573). Both Cd and Cu concentrations in the Java-Sumatra upwelling region follow the periodic upwelling pattern. Overall, both Cd and Cu show a declining trend in concentration from 2012 to 2019. It is estimated that dissolved Cd concentration declined from 1500-2000 pmol/kg in 2012 to 1000-1500 pmol/kg in 2019 for all locations. Dissolved Cu concentration decreased from 30-35 nmol/kg in 2012 to 25-30 nmol/kg in 2019. Estimated dissolved Cd and Cu follow the linear functions of silicate (SiO4), nitrate (NO3), and primary productivity. The fluctuation of anthropogenic activities and global warming are likely to indirectly impact the decline in metal concentrations by affecting nutrients and primary productivity.


Subject(s)
Metals, Heavy , Trace Elements , Cadmium/analysis , Copper/analysis , Environmental Monitoring , Metals, Heavy/analysis , Trace Elements/analysis
SELECTION OF CITATIONS
SEARCH DETAIL