Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
1.
Protein Sci ; 33(6): e5011, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38747388

ABSTRACT

A protein sequence encodes its energy landscape-all the accessible conformations, energetics, and dynamics. The evolutionary relationship between sequence and landscape can be probed phylogenetically by compiling a multiple sequence alignment of homologous sequences and generating common ancestors via Ancestral Sequence Reconstruction or a consensus protein containing the most common amino acid at each position. Both ancestral and consensus proteins are often more stable than their extant homologs-questioning the differences between them and suggesting that both approaches serve as general methods to engineer thermostability. We used the Ribonuclease H family to compare these approaches and evaluate how the evolutionary relationship of the input sequences affects the properties of the resulting consensus protein. While the consensus protein derived from our full Ribonuclease H sequence alignment is structured and active, it neither shows properties of a well-folded protein nor has enhanced stability. In contrast, the consensus protein derived from a phylogenetically-restricted set of sequences is significantly more stable and cooperatively folded, suggesting that cooperativity may be encoded by different mechanisms in separate clades and lost when too many diverse clades are combined to generate a consensus protein. To explore this, we compared pairwise covariance scores using a Potts formalism as well as higher-order sequence correlations using singular value decomposition (SVD). We find the SVD coordinates of a stable consensus sequence are close to coordinates of the analogous ancestor sequence and its descendants, whereas the unstable consensus sequences are outliers in SVD space.


Subject(s)
Evolution, Molecular , Ribonuclease H/chemistry , Ribonuclease H/genetics , Ribonuclease H/metabolism , Consensus Sequence , Sequence Alignment , Phylogeny , Amino Acid Sequence , Models, Molecular , Protein Folding , Protein Conformation
2.
Elife ; 122024 May 31.
Article in English | MEDLINE | ID: mdl-38820052

ABSTRACT

Bacteria of the family Enterobacteriaceae are associated with gastrointestinal (GI) bleeding and bacteremia and are a leading cause of death, from sepsis, for individuals with inflammatory bowel diseases. The bacterial behaviors and mechanisms underlying why these bacteria are prone to bloodstream entry remain poorly understood. Herein, we report that clinical isolates of non-typhoidal Salmonella enterica serovars, Escherichia coli, and Citrobacter koseri are rapidly attracted toward sources of human serum. To simulate GI bleeding, we utilized an injection-based microfluidics device and found that femtoliter volumes of human serum are sufficient to induce bacterial attraction to the serum source. This response is orchestrated through chemotaxis and the chemoattractant L-serine, an amino acid abundant in serum that is recognized through direct binding by the chemoreceptor Tsr. We report the first crystal structures of Salmonella Typhimurium Tsr in complex with L-serine and identify a conserved amino acid recognition motif for L-serine shared among Tsr orthologues. We find Tsr to be widely conserved among Enterobacteriaceae and numerous World Health Organization priority pathogens associated with bloodstream infections. Lastly, we find that Enterobacteriaceae use human serum as a source of nutrients for growth and that chemotaxis and the chemoreceptor Tsr provide a competitive advantage for migration into enterohemorrhagic lesions. We define this bacterial behavior of taxis toward serum, colonization of hemorrhagic lesions, and the consumption of serum nutrients as 'bacterial vampirism', which may relate to the proclivity of Enterobacteriaceae for bloodstream infections.


Sepsis is the leading cause of death in patients with inflammatory bowel disease. Individuals with this condition can experience recurrent episodes of intestinal bleeding, giving intestinal (or enteric) bacteria an entry point into the bloodstream. This puts patients at risk of developing fatal infections ­ particularly from infections caused by bacteria belonging to the Enterobacteriaceae family. However, it is not well understood why this family of bacteria are particularly prone to entering the bloodstream. Enteric bacteria commonly respond to chemicals (or chemical stimuli) in their environment. This process, known as chemotaxis, helps bacteria with a variety of tasks, such as monitoring their environment, moving to different areas within their environment or colonizing their host. Chemical stimuli are classed as 'attractants' or 'repellents', with attractants luring the bacteria to an area and repellents discouraging the bacteria from being in a specific place. Intestinal bleeds will release serum (the liquid part of blood) into the gut, which could serve as a source of chemical stimuli to attract Enterobacteriaceae into the bloodstream. To find out more, Glen, Gentry-Lear et al. first used a microfluidic device to simulate an intestinal bleed and tested the response of Enterobacteriaceae bacteria to serum. Using chemotaxis, bacteria were found to be attracted to the amino acid L-serine in the serum to which they were able to attach through a receptor called Tsr. They also consumed nutrients present in the human serum to help them grow. Experiments with intestinal tissue showed that chemotaxis attracted bacteria to bleeding blood vessels and the Tsr receptor helped them to infiltrate the blood vessels. Glen et al. termed this attraction to and feeding upon blood serum as 'bacterial vampirism'. These findings suggest that chemotaxis of Enterobacteriaceae towards L-serine in serum may be linked to their tendency to enter the bloodstream. Developing therapies that target chemotaxis in Enterobacteriaceae may provide a method for managing bloodstream infections.


Subject(s)
Chemotaxis , Serum , Humans , Serine/metabolism , Enterobacteriaceae , Animals , Mice , Salmonella enterica , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
3.
J Am Board Fam Med ; 37(2): 261-269, 2024.
Article in English | MEDLINE | ID: mdl-38740488

ABSTRACT

INTRODUCTION: HIV pre-exposure prophylaxis (PrEP) is effective at reducing HIV transmission. However, PrEP uptake is low for racial and ethnic minorities and women, especially in the Southern US Health care clinicians should be prepared to identify all patients eligible for PrEP, provide counseling, and prescribe PrEP. METHODS: Retrospective analysis of persons newly diagnosed with HIV was conducted at a large public health system from January 2015 to June 2021. Interactions with the health system in the 5 years preceding HIV diagnosis were analyzed, and missed opportunities for HIV prevention interventions, including PrEP and condom use counseling, were identified. RESULTS: We identified 454 patients with a new HIV diagnosis with previous health system interactions. 166(36.6%) had at least 1 identifiable indication for PrEP: 42(9.3%) bacterial STI, 63(13.9%) inconsistent condom use, or 82(18%) injection drug use before HIV diagnosis. Only 7(1.5%) of patients were counseled on PrEP. Most patients (308; 67.8%) had no documented condom use history in the EHR before diagnosis, a surrogate marker for obtaining a sexual history. Patients who exclusively interacted with the emergency care setting did not receive PrEP education and were less likely to receive condom use counseling. CONCLUSION: Missed opportunities to offer HIV prevention before diagnosis were common among patients newly diagnosed with HIV. Most patients did not have sexual history documented in the chart before their HIV diagnosis. Educational interventions are needed to ensure that clinicians are prepared to identify those eligible and discuss the benefits of PrEP.


Subject(s)
HIV Infections , Pre-Exposure Prophylaxis , Humans , HIV Infections/prevention & control , HIV Infections/diagnosis , Female , Retrospective Studies , Male , Adult , Pre-Exposure Prophylaxis/statistics & numerical data , Middle Aged , Safety-net Providers/statistics & numerical data , Counseling/statistics & numerical data , Condoms/statistics & numerical data , Young Adult , Anti-HIV Agents/therapeutic use , Anti-HIV Agents/administration & dosage
4.
bioRxiv ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38798518

ABSTRACT

S100A9 is a Damage Associated Molecular Pattern (DAMP) that activates inflammatory pathways via Toll-like receptor 4 (TLR4). This activity plays important homeostatic roles in tissue repair, but can also contribute to inflammatory diseases. The mechanism of activation is unknown. Here, we follow up on a previous observation that the protein CD14 is an important co-receptor that enables S100A9 to activate TLR4. Using cell-based functional assays and a combination of mutations and pharmocological perturbations, we found that CD14 must be membrane bound to potentiate TLR4 activation by S100A9. Additionally, S100A9 is sensitive to inhibitors of pathways downstream of TLR4 internalization. Together, this suggests that S100A9 induces activity via CD14-dependent internalization of TLR4. We then used mutagenesis, structural modeling, and in vitro binding experiments to establish that S100A9 binds to CD14's N-terminus in a region that overlaps with, but is not identical to, the region where CD14 binds its canonical ligand, lipopolysaccharide (LPS). In molecular dynamics simulations, this region of the protein is dynamic, allowing it to reorganize to recognize both S100A9 (a soluble protein) and LPS (a small hydrophobic molecule). Our work is the first attempt at a molecular characterization of the S100A9/CD14 interaction, bringing us one step closer to unraveling the full mechanism by which S100A9 activates TLR4/MD-2.

5.
J Biol Chem ; 300(5): 107280, 2024 May.
Article in English | MEDLINE | ID: mdl-38588810

ABSTRACT

Evolutionarily conserved structural folds can give rise to diverse biological functions, yet predicting atomic-scale interactions that contribute to the emergence of novel activities within such folds remains challenging. Pancreatic-type ribonucleases illustrate this complexity, sharing a core structure that has evolved to accommodate varied functions. In this study, we used ancestral sequence reconstruction to probe evolutionary and molecular determinants that distinguish biological activities within eosinophil members of the RNase 2/3 subfamily. Our investigation unveils functional, structural, and dynamical behaviors that differentiate the evolved ancestral ribonuclease (AncRNase) from its contemporary eosinophil RNase orthologs. Leveraging the potential of ancestral reconstruction for protein engineering, we used AncRNase predictions to design a minimal 4-residue variant that transforms human RNase 2 into a chimeric enzyme endowed with the antimicrobial and cytotoxic activities of RNase 3 members. This work provides unique insights into mutational and evolutionary pathways governing structure, function, and conformational states within the eosinophil RNase subfamily, offering potential for targeted modulation of RNase-associated functions.


Subject(s)
Eosinophils , Humans , Amino Acid Sequence , Eosinophils/metabolism , Eosinophils/enzymology , Evolution, Molecular , Ribonucleases/metabolism , Ribonucleases/chemistry , Ribonucleases/genetics , Animals , Macaca fascicularis , Phylogeny , Models, Molecular , Protein Structure, Tertiary
6.
Schizophr Bull ; 50(3): 496-512, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38451304

ABSTRACT

This article describes the rationale, aims, and methodology of the Accelerating Medicines Partnership® Schizophrenia (AMP® SCZ). This is the largest international collaboration to date that will develop algorithms to predict trajectories and outcomes of individuals at clinical high risk (CHR) for psychosis and to advance the development and use of novel pharmacological interventions for CHR individuals. We present a description of the participating research networks and the data processing analysis and coordination center, their processes for data harmonization across 43 sites from 13 participating countries (recruitment across North America, Australia, Europe, Asia, and South America), data flow and quality assessment processes, data analyses, and the transfer of data to the National Institute of Mental Health (NIMH) Data Archive (NDA) for use by the research community. In an expected sample of approximately 2000 CHR individuals and 640 matched healthy controls, AMP SCZ will collect clinical, environmental, and cognitive data along with multimodal biomarkers, including neuroimaging, electrophysiology, fluid biospecimens, speech and facial expression samples, novel measures derived from digital health technologies including smartphone-based daily surveys, and passive sensing as well as actigraphy. The study will investigate a range of clinical outcomes over a 2-year period, including transition to psychosis, remission or persistence of CHR status, attenuated positive symptoms, persistent negative symptoms, mood and anxiety symptoms, and psychosocial functioning. The global reach of AMP SCZ and its harmonized innovative methods promise to catalyze the development of new treatments to address critical unmet clinical and public health needs in CHR individuals.


Subject(s)
Psychotic Disorders , Schizophrenia , Humans , Prospective Studies , Adult , Prodromal Symptoms , Young Adult , International Cooperation , Adolescent , Research Design/standards , Male , Female
7.
Front Psychiatry ; 15: 1240502, 2024.
Article in English | MEDLINE | ID: mdl-38362028

ABSTRACT

Introduction: Structural brain connectivity abnormalities have been associated with several psychiatric disorders. Schizophrenia (SCZ) is a chronic disabling disorder associated with accelerated aging and increased risk of dementia, though brain findings in the disorder have rarely been directly compared to those that occur with aging. Methods: We used an automated approach to reconstruct key white matter tracts and assessed tract integrity in five participant groups. We acquired one-hour-long high-directional diffusion MRI data from young control (CON, n =28), bipolar disorder (BPD, n =21), and SCZ (n =22) participants aged 18-30, and healthy elderly (ELD, n =15) and dementia (DEM, n =9) participants. Volume, fractional (FA), radial diffusivity (RD) and axial diffusivity (AD) of seven key white matter tracts (anterior thalamic radiation, ATR; dorsal and ventral cingulum bundle, CBD and CBV; corticospinal tract, CST; and the three superior longitudinal fasciculi: SLF-1, SLF-2 and SLF-3) were analyzed with TRACULA. Group comparisons in tract metrics were performed using multivariate and univariate analyses. Clinical relationships of tract metrics with recent and chronic symptoms were assessed in SCZ and BPD participants. Results: A MANOVA showed group differences in FA (λ=0.5; p=0.0002) and RD (λ=0.35; p<0.0001) across the seven tracts, but no significant differences in tract AD and volume. Post-hoc analyses indicated lower tract FA and higher RD in ELD and DEM groups compared to CON, BPD and SCZ groups. Lower FA and higher RD in SCZ compared to CON did not meet statistical significance. In SCZ participants, a significant negative correlation was found between chronic psychosis severity and FA in the SLF-1 (r= -0.45; p=0.035), SLF-2 (r= -0.49; p=0.02) and SLF-3 (r= -0.44; p=0.042). Discussion: Our results indicate impaired white matter tract integrity in elderly populations consistent with myelin damage. Impaired tract integrity in SCZ is most prominent in patients with advanced illness.

8.
bioRxiv ; 2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38293242

ABSTRACT

Many bacteria that colonize the guts of animals use chemotaxis to direct swimming motility and select sites for colonization based on sources of effectors derived from the host, diet, and microbial competitors of the local environ. The complex ecosystem of the gastrointestinal tract contains mixtures of chemoattractants and chemorepellents, but it remains poorly understood how swimming bacteria navigate conflicting signals. The enteric pathogen Salmonella Typhimurium possesses Tsr, a chemoreceptor protein that directs both chemoattraction and chemorepulsion responses, which we employed as a model to study chemotaxis in the presence of conflicting effector stimuli. We investigated how S. Typhimurium responds to human fecal matter, an effector source in the enteric lumen that contains high concentrations of indole, a bacteriostatic chemorepellent produced by the native commensals of the microbiota, and also nutrients such as l-serine, a chemoattractant. The indole concentration in human feces is more than 12-fold the concentration required for half-maximal chemorepulsion, however, we find S. Typhimurium, and various clinical isolates of non-typhoidal S. enterica serovars, are strongly attracted to liquid fecal matter. We further investigated the chemotactic responses of S. Typhimurium to titrations of indole and l-serine and revealed that chemorepulsion to indole is overridden in the presence of excess l-serine. We capture the inversion of these two opposing taxis behaviors in a phenomenon we define as "chemohalation" in which the bacteria organize into a halo around the treatment source with an interior zone of avoidance, which represents a compromise between chemoattraction and chemorepulsion. Growth analyses reveal that the chemotactic responses to these opposing effectors align chemoattraction and chemorepulsion with the relative growth of the bacteria in culture. Hence, our study supports the view that evolution has finely tuned chemotaxis to assess environmental habitability by evaluating the tradeoffs in bacterial growth based on the local combination of effectors.

9.
bioRxiv ; 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-37461633

ABSTRACT

Bacteria of the family Enterobacteriaceae are associated with gastrointestinal (GI) bleeding and bacteremia and are a leading cause of death, from sepsis, for individuals with inflammatory bowel diseases. The bacterial behaviors and mechanisms underlying why these bacteria are prone to bloodstream entry remains poorly understood. Herein, we report that clinical isolates of non-typhoidal Salmonella enterica serovars, Escherichia coli, and Citrobacter koseri are rapidly attracted toward sources of human serum. To simulate GI bleeding, we utilized a custom injection-based microfluidics device and found that femtoliter volumes of human serum are sufficient to induce the bacterial population to swim toward and aggregate at the serum source. This response is orchestrated through chemotaxis, and a major chemical cue driving chemoattraction is L-serine, an amino acid abundant in serum that is recognized through direct binding by the chemoreceptor Tsr. We report the first crystal structures of Salmonella Typhimurium Tsr in complex with L-serine and identify a conserved amino acid recognition motif for L-serine shared among Tsr orthologues. By mapping the phylogenetic distribution of this chemoreceptor we found Tsr to be widely conserved among Enterobacteriaceae and numerous World Health Organization priority pathogens associated with bloodstream infections. Lastly, we find that Enterobacteriaceae use human serum as a source of nutrients for growth and that chemotaxis and the chemoreceptor Tsr provides a competitive advantage for migration into enterohaemorrhagic lesions. We term this bacterial behavior of taxis toward serum, colonization of hemorrhagic lesions, and the consumption of serum nutrients, as 'bacterial vampirism' which may relate to the proclivity of Enterobacteriaceae for bloodstream infections.

10.
Annu Rev Biophys ; 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38134334

ABSTRACT

A protein's sequence determines its conformational energy landscape. This, in turn, determines the protein's function. Understanding the evolution of new protein functions therefore requires understanding how mutations alter the protein energy landscape. Ancestral sequence reconstruction (ASR) has proven a valuable tool for tackling this problem. In ASR, one phylogenetically infers the sequences of ancient proteins, allowing characterization of their properties. When coupled to biophysical, biochemical, and functional characterization, ASR can reveal how historical mutations altered the energy landscape of ancient proteins, allowing the evolution of enzyme activity, altered conformations, binding specificity, oligomerization, and many other protein features. In this article, we review how ASR studies have been used to dissect the evolution of energy landscapes. We also discuss ASR studies that reveal how energy landscapes have shaped protein evolution. Finally, we propose that thinking about evolution from the perspective of an energy landscape can improve how we approach and interpret ASR studies. Expected final online publication date for the Annual Review of Biophysics, Volume 53 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

11.
bioRxiv ; 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37461563

ABSTRACT

The organization of chromatin - including the positions of nucleosomes and the binding of other proteins to DNA - helps define transcriptional profiles in eukaryotic organisms. While techniques like ChIP-Seq and MNase-Seq can map protein-DNA and nucleosome localization separately, assays designed to simultaneously capture nucleosome positions and protein-DNA interactions can produce a detailed picture of the chromatin landscape. Most assays that monitor chromatin organization and protein binding rely on antibodies, which often exhibit nonspecific binding, and/or the addition of bulky adducts to the DNA-binding protein being studied, which can affect their expression and activity. Here, we describe SpyCatcher Linked Targeting of Chromatin Endogenous Cleavage (SpLiT-ChEC), where a 13-amino acid SpyTag peptide, appended to a protein of interest, serves as a highly-specific targeting moiety for in situ enzymatic digestion. The SpyTag/SpyCatcher system forms a covalent bond, linking the target protein and a co-expressed MNase-SpyCatcher fusion construct. SpyTagged proteins are expressed from endogenous loci, whereas MNase-SpyCatcher expression is induced immediately before harvesting cultures. MNase is activated with high concentrations of calcium, which primarily digests DNA near target protein binding sites. By sequencing the DNA fragments released by targeted MNase digestion, we found that this method recovers information on protein binding and proximal nucleosome positioning. SpLiT-ChEC provides precise temporal control that we anticipate can be used to monitor chromatin under various conditions and at distinct points in the cell cycle.

12.
Neuroimage ; 276: 120192, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37247763

ABSTRACT

Several cardiovascular and metabolic indicators, such as cholesterol and blood pressure have been associated with altered neural and cognitive health as well as increased risk of dementia and Alzheimer's disease in later life. In this cross-sectional study, we examined how an aggregate index of cardiovascular and metabolic risk factor measures was associated with correlation-based estimates of resting-state functional connectivity (FC) across a broad adult age-span (36-90+ years) from 930 volunteers in the Human Connectome Project Aging (HCP-A). Increased (i.e., worse) aggregate cardiometabolic scores were associated with reduced FC globally, with especially strong effects in insular, medial frontal, medial parietal, and superior temporal regions. Additionally, at the network-level, FC between core brain networks, such as default-mode and cingulo-opercular, as well as dorsal attention networks, showed strong effects of cardiometabolic risk. These findings highlight the lifespan impact of cardiovascular and metabolic health on whole-brain functional integrity and how these conditions may disrupt higher-order network integrity.


Subject(s)
Cardiovascular Diseases , Connectome , Middle Aged , Humans , Aged , Adult , Aged, 80 and over , Connectome/methods , Cross-Sectional Studies , Aging/physiology , Brain/diagnostic imaging , Brain/physiology , Cardiovascular Diseases/diagnostic imaging , Magnetic Resonance Imaging
13.
Front Neuroinform ; 17: 1104508, 2023.
Article in English | MEDLINE | ID: mdl-37090033

ABSTRACT

Introduction: Neuroimaging technology has experienced explosive growth and transformed the study of neural mechanisms across health and disease. However, given the diversity of sophisticated tools for handling neuroimaging data, the field faces challenges in method integration, particularly across multiple modalities and species. Specifically, researchers often have to rely on siloed approaches which limit reproducibility, with idiosyncratic data organization and limited software interoperability. Methods: To address these challenges, we have developed Quantitative Neuroimaging Environment & Toolbox (QuNex), a platform for consistent end-to-end processing and analytics. QuNex provides several novel functionalities for neuroimaging analyses, including a "turnkey" command for the reproducible deployment of custom workflows, from onboarding raw data to generating analytic features. Results: The platform enables interoperable integration of multi-modal, community-developed neuroimaging software through an extension framework with a software development kit (SDK) for seamless integration of community tools. Critically, it supports high-throughput, parallel processing in high-performance compute environments, either locally or in the cloud. Notably, QuNex has successfully processed over 10,000 scans across neuroimaging consortia, including multiple clinical datasets. Moreover, QuNex enables integration of human and non-human workflows via a cohesive translational platform. Discussion: Collectively, this effort stands to significantly impact neuroimaging method integration across acquisition approaches, pipelines, datasets, computational environments, and species. Building on this platform will enable more rapid, scalable, and reproducible impact of neuroimaging technology across health and disease.

14.
J Community Health ; 48(5): 793-797, 2023 10.
Article in English | MEDLINE | ID: mdl-37119350

ABSTRACT

OBJECTIVE: A new monthly virtual education curriculum on sexual healthcare was launched in 2021. This is an analysis of the pilot education series designed to increase primary care providers' knowledge of sexual health best practices including taking thorough sexual histories, STI screening and treatment, and PrEP prescribing. METHODS: A Sexual Health Curriculum Series was developed as part of a quality improvement initiative at a large urban safety-net hospital in Dallas County, Texas. Didactic sessions were administered to primary care providers and staff via a virtual meeting platform once a month from May 2021 to April 2022. RESULTS: A total of 52 participants completed the pre-series survey, and 21 participants filled out the final post-series survey. 70% of respondents who completed the post-series survey reported that they learned new information that was incorporated into their practice. The average percentage correct on individual pre-session surveys was 60% compared to 63% on individual post-session surveys (p = 0.03). CONCLUSION: Sexual health education is an important tool to help primary care providers adhere to sexual health best practices. There is a need for ongoing implementation of innovative strategies to improve knowledge and adherence to sexual health best practices. A sexual health curriculum may be effective in helping primary providers recognize patients at increased risk and apply evidence-based guidelines to their practices.


Subject(s)
HIV Infections , Sexual Health , Sexually Transmitted Diseases , Humans , Sexual Health/education , Texas , Sexual Behavior , Curriculum , Sexually Transmitted Diseases/diagnosis , Sexually Transmitted Diseases/prevention & control , HIV Infections/prevention & control
15.
Hepatol Commun ; 7(4)2023 04 01.
Article in English | MEDLINE | ID: mdl-36972394

ABSTRACT

BACKGROUND: During the opioid epidemic, misuse of acetaminophen-opioid products resulted in supratherapeutic acetaminophen ingestions and cases of hepatotoxicity. In 2014, the US Food and Drug Administration (FDA) limited the amount of acetaminophen in combination products to 325 mg, and the US Drug Enforcement Administration (DEA) changed hydrocodone/acetaminophen from schedule III to schedule II. This study assessed whether these federal mandates were associated with changes in acetaminophen-opioid supratherapeutic ingestions. METHODS: We identified emergency department encounters at our institution of patients with a detectable acetaminophen concentration and manually reviewed these charts. RESULTS: We found a decline in acetaminophen-opioid supratherapeutic ingestions after 2014. A downtrend in hydrocodone/acetaminophen ingestions accompanied a relative increase in codeine/acetaminophen ingestions from 2015 onwards. CONCLUSION: This experience at one large safety net hospital suggests a beneficial impact of the FDA ruling in reducing likely unintentional acetaminophen supratherapeutic ingestions, carrying a risk of hepatotoxicity, in the setting of intentional opioid ingestions.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Humans , Analgesics, Opioid/therapeutic use , Hydrocodone/therapeutic use , Chemical and Drug Induced Liver Injury/epidemiology , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/drug therapy
16.
Cereb Cortex ; 33(11): 6928-6942, 2023 05 24.
Article in English | MEDLINE | ID: mdl-36724055

ABSTRACT

The human brain is active at rest, and spontaneous fluctuations in functional MRI BOLD signals reveal an intrinsic functional architecture. During childhood and adolescence, functional networks undergo varying patterns of maturation, and measures of functional connectivity within and between networks differ as a function of age. However, many aspects of these developmental patterns (e.g. trajectory shape and directionality) remain unresolved. In the present study, we characterised age-related differences in within- and between-network resting-state functional connectivity (rsFC) and integration (i.e. participation coefficient, PC) in a large cross-sectional sample of children and adolescents (n = 628) aged 8-21 years from the Lifespan Human Connectome Project in Development. We found evidence for both linear and non-linear differences in cortical, subcortical, and cerebellar rsFC, as well as integration, that varied by age. Additionally, we found that sex moderated the relationship between age and putamen integration where males displayed significant age-related increases in putamen PC compared with females. Taken together, these results provide evidence for complex, non-linear differences in some brain systems during development.


Subject(s)
Brain , Connectome , Male , Child , Female , Humans , Adolescent , Cross-Sectional Studies , Brain/diagnostic imaging , Connectome/methods , Longevity , Magnetic Resonance Imaging , Neural Pathways/diagnostic imaging
17.
Biophys J ; 122(9): 1600-1612, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36710492

ABSTRACT

Mutations introduced into macromolecules often exhibit epistasis, where the effect of one mutation alters the effect of another. Knowing the mechanisms that lead to epistasis is important for understanding how macromolecules work and evolve, as well as for effective macromolecular engineering. Here, we investigate the interplay between "contact epistasis" (epistasis arising from physical interactions between mutated residues) and "ensemble epistasis" (epistasis that occurs when a mutation redistributes the conformational ensemble of a macromolecule, thus changing the effect of the second mutation). We argue that the two mechanisms can be distinguished in allosteric macromolecules by measuring epistasis at differing allosteric effector concentrations. Contact epistasis manifests as nonadditivity in the microscopic equilibrium constants describing the conformational ensemble. This epistatic effect is independent of allosteric effector concentration. Ensemble epistasis manifests as nonadditivity in thermodynamic observables-such as ligand binding-that are determined by the distribution of ensemble conformations. This epistatic effect strongly depends on allosteric effector concentration. Using this framework, we experimentally investigated the origins of epistasis in three pairwise mutant cycles introduced into the adenine riboswitch aptamer domain by measuring ligand binding as a function of allosteric effector concentration. We found evidence for both contact and ensemble epistasis in all cycles. Furthermore, we found that the two mechanisms of epistasis could interact with each other. For example, in one mutant cycle we observed 6 kcal/mol of contact epistasis in a microscopic equilibrium constant. In that same cycle, the maximum epistasis in ligand binding was only 1.5 kcal/mol: shifts in the ensemble masked the contribution of contact epistasis. Finally, our work yields simple heuristics for identifying contact and ensemble epistasis based on measurements of a biochemical observable as a function of allosteric effector concentration.


Subject(s)
Riboswitch , Riboswitch/genetics , Epistasis, Genetic , Ligands , Thermodynamics , Mutation
18.
Protein Sci ; 32(2): e4551, 2023 02.
Article in English | MEDLINE | ID: mdl-36565302

ABSTRACT

Ancestral sequence reconstruction (ASR) is a powerful tool to study the evolution of proteins and thus gain deep insight into the relationships among protein sequence, structure, and function. A major barrier to its broad use is the complexity of the task: it requires multiple software packages, complex file manipulations, and expert phylogenetic knowledge. Here we introduce topiary, a software pipeline that aims to overcome this barrier. To use topiary, users prepare a spreadsheet with a handful of sequences. Topiary then: (1) Infers the taxonomic scope for the ASR study and finds relevant sequences by BLAST; (2) Does taxonomically informed sequence quality control and redundancy reduction; (3) Constructs a multiple sequence alignment; (4) Generates a maximum-likelihood gene tree; (5) Reconciles the gene tree to the species tree; (6) Reconstructs ancestral amino acid sequences; and (7) Determines branch supports. The pipeline returns annotated evolutionary trees, spreadsheets with sequences, and graphical summaries of ancestor quality. This is achieved by integrating modern phylogenetics software (Muscle5, RAxML-NG, GeneRax, and PastML) with online databases (NCBI and the Open Tree of Life). In this paper, we introduce non-expert readers to the steps required for ASR, describe the specific design choices made in topiary, provide a detailed protocol for users, and then validate the pipeline using datasets from a broad collection of protein families. Topiary is freely available for download: https://github.com/harmslab/topiary.


Subject(s)
Proteins , Software , Phylogeny , Amino Acid Sequence , Proteins/genetics , Proteins/chemistry , Sequence Alignment , Evolution, Molecular
19.
Sci Rep ; 12(1): 22640, 2022 12 31.
Article in English | MEDLINE | ID: mdl-36587027

ABSTRACT

Non-pairwise interactions, or higher-order interactions (HOIs), in microbial communities have been described as significant drivers of emergent features in microbiomes. Yet, the re-organization of microbial interactions between pairwise cultures and larger communities remains largely unexplored from a molecular perspective but is central to our understanding and further manipulation of microbial communities. Here, we used a bottom-up approach to investigate microbial interaction mechanisms from pairwise cultures up to 4-species communities from a simple microbiome (Hafnia alvei, Geotrichum candidum, Pencillium camemberti and Escherichia coli). Specifically, we characterized the interaction landscape for each species combination involving E. coli by identifying E. coli's interaction-associated mutants using an RB-TnSeq-based interaction assay. We observed a deep reorganization of the interaction-associated mutants, with very few 2-species interactions conserved all the way up to a 4-species community and the emergence of multiple HOIs. We further used a quantitative genetics strategy to decipher how 2-species interactions were quantitatively conserved in higher community compositions. Epistasis-based analysis revealed that, of the interactions that are conserved at all levels of complexity, 82% follow an additive pattern. Altogether, we demonstrate the complex architecture of microbial interactions even within a simple microbiome, and provide a mechanistic and molecular explanation of HOIs.


Subject(s)
Hafnia alvei , Microbiota , Escherichia coli/genetics , Microbial Interactions , Microbiota/genetics
20.
Depress Anxiety ; 39(12): 881-890, 2022 12.
Article in English | MEDLINE | ID: mdl-36321433

ABSTRACT

INTRODUCTION: Compared to research on adults with depression, relatively little work has examined white matter microstructure differences in depression arising earlier in life. Here we tested hypotheses about disruptions to white matter structure in adolescents with current and past depression, with an a priori focus on the cingulum bundles, uncinate fasciculi, corpus collosum, and superior longitudinal fasciculus. METHODS: One hundred thirty-one children from the Preschool Depression Study were assessed using a Human Connectome Project style diffusion imaging sequence which was processed with HCP pipelines and TRACULA to generate estimates of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD). RESULTS: We found that reduced FA, reduced AD, and increased RD in the dorsal cingulum bundle were associated with a lifetime diagnosis of major depression and greater cumulative and current depression severity. Reduced FA, reduced AD, and increased RD in the ventral cingulum were associated with greater cumulative depression severity. CONCLUSION: These findings support the emergence of white matter differences detected in adolescence associated with earlier life and concurrent depression. They also highlight the importance of connections of the cingulate to other brain regions in association with depression, potentially relevant to understanding emotion dysregulation and functional connectivity differences in depression.


Subject(s)
White Matter , Adult , Child , Adolescent , Humans , Child, Preschool , White Matter/diagnostic imaging , Diffusion Tensor Imaging/methods , Depression/diagnostic imaging , Nerve Net , Brain , Anisotropy
SELECTION OF CITATIONS
SEARCH DETAIL
...