Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 98(2-1): 022223, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30253531

ABSTRACT

Models for the stabilization of an inverted pendulum figure prominently in studies of human balance control. Surprisingly, fluctuations in measures related to the vertical displacement angle for quietly standing adults with eyes closed exhibit chaos. Here we show that small-amplitude chaotic fluctuations ("microchaos") can be generated by the interplay between three essential components of human neural balance control, namely time-delayed feedback, a sensory dead zone, and frequency-dependent encoding of force. When the sampling frequency of the force encoding is decreased, the sensitivity of the balance control to changes in the initial conditions increases. The sampled, time-delayed nature of the balance control may provide insights into why falls are more common in the very young and the elderly.


Subject(s)
Feedback, Physiological/physiology , Postural Balance/physiology , Adult , Aged , Humans , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL