Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 268
Filter
1.
Eur J Endocrinol ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39049802

ABSTRACT

AIMS: Although metformin is widely used for treatment of type 2 diabetes (T2D), its glucose-lowering mechanisms remains unclear. Using the glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) antagonist exendin(9-39)NH2, we tested the hypothesis that postprandial GLP-1-mediated effects contribute to the glucose-lowering potential of metformin in T2D. METHODS: In a randomised, placebo-controlled, double-blind, crossover study, 15 individuals with T2D (median HbA1c 50 mmol/mol (6.7%), BMI 30.1 kg/m2, age 71 years) underwent, in randomised order, 14 days of metformin and placebo treatment, respectively. Each treatment period was preceded by 14 days without any glucose-lowering medicine and concluded by two 4-hour mixed meal tests performed in randomised order and separated by >24 hours with either continuous intravenous exendin(9-39)NH2 or saline infusion. RESULTS: Compared to placebo, metformin treatment lowered fasting plasma glucose (mean of differences (MD) 1.4 mmol/l×min (95% CI 0.8-2.0)) as well as postprandial plasma glucose excursions during both saline infusion (MD 186 mmol/l×min (95% CI 64-307)) and exendin(9-39)NH2 infusion (MD 268 mmol/l×min (95% CI 108-427)). The metformin-induced improvement in postprandial glucose tolerance was unaffected by GLP-1R antagonization (MD 82 mmol/l×min (95% CI -6,564-170)). Metformin treatment increased fasting plasma GLP-1 (MD 1.7 pmol/l×min (95% CI 0.39-2.9)) but did not affect postprandial GLP-1 responses (MD 820 pmol/l×min (95% CI -1,750-111)). CONCLUSIONS: Using GLP-1R antagonization, we could not detect GLP-1-mediated postprandial glucose-lowering effect of metformin in individuals with T2D. We show that two weeks of metformin treatment increases fasting plasma GLP-1, which may contribute to metformin's beneficial effect on fasting plasma glucose in T2D. TRIAL REGISTRATION: Clinicaltrials.gov NCT03246451.

2.
Diabetes ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052774

ABSTRACT

It is not completely clear which organs are responsible for glucagon elimination in humans, and disturbances in the elimination of glucagon could contribute to the hyperglucagonemia observed in chronic liver disease and chronic kidney disease (CKD). Here, we evaluated kinetics and metabolic effects of exogenous glucagon in individuals with stage 4 CKD (n =16), individuals with Child-Pugh A-C cirrhosis (n = 16) and matched control individuals (n = 16), before, during and after a 60-minute glucagon infusion (4 ng/kg/min). Individuals with CKD exhibited a significantly lower mean metabolic clearance rate of glucagon (14.0 [95% CI 12.2;15.7] mL/kg/min) both compared to individuals with cirrhosis (19.7 [18.1;21.3] mL/kg/min, P < 0.001) and to control individuals (20.4 [18.1;22.7] mL/kg/min, P < 0.001). Glucagon half-life was significantly prolonged in the CKD group (7.5 [6.9;8.2] minutes) compared to individuals with cirrhosis (5.7 [5.2;6.3] minutes, P = 0.002) and control individuals (5.7 [5.2;6.3] minutes, P < 0.001). No difference in the effects of exogenous glucagon on plasma glucose, amino acids, or triglycerides was observed between groups. In conclusion, chronic kidney disease, but not liver cirrhosis leads to a significant reduction in glucagon clearance, supporting the kidneys as a primary site for human glucagon elimination.

3.
Pediatr Blood Cancer ; 71(9): e31159, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38953152

ABSTRACT

BACKGROUND: Early-onset osteoporosis is a frequent late effect after pediatric hematopoietic stem cell transplantation (HSCT). It remains unknown if physical training can improve bone formation in these patients, as the transplantation procedure may cause sustained dysregulation of the bone-forming osteoblast progenitor cells. OBJECTIVE: We aimed to explore the effect of resistance training on bone remodeling in long-term survivors of pediatric HSCT. PROCEDURE: In this prospective, controlled intervention study, we included seven HSCT survivors and 15 age- and sex-matched healthy controls. The participants completed a 12-week heavy load, lower extremity resistance training intervention with three weekly sessions. We measured fasting serum levels of the bone formation marker "N-terminal propeptide of type I procollagen" (P1NP), and the bone resorption marker "C-terminal telopeptide of type I collagen" (CTX). The hypothesis was planned before data collection began. The trial was registered at Clinicaltrials.gov before including the first participant, with trial registration no. NCT04922970. RESULTS: Resistance training led to significantly increased levels of fasting P1NP in both patients (from 57.62 to 114.99 ng/mL, p = .03) and controls (from 66.02 to 104.62 ng/mL, p < .001). No significant changes in fasting CTX levels were observed. CONCLUSIONS: Despite previous high-dose cytotoxic therapy, long-term survivors of pediatric HSCT respond to resistance training with improvement of bone formation, comparable to that of healthy controls. This suggests that resistance training might be a promising non-pharmacological approach to prevent the early decline in bone mass, and should be considered as part of a follow-up program to counteract long-term sequela after pediatric HSCT.


Subject(s)
Bone Remodeling , Hematopoietic Stem Cell Transplantation , Resistance Training , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Male , Female , Child , Adolescent , Prospective Studies , Survivors , Case-Control Studies , Follow-Up Studies , Procollagen/blood , Peptide Fragments/blood , Osteoporosis/etiology , Collagen Type I/blood , Biomarkers/blood
4.
Br J Pharmacol ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38952084

ABSTRACT

BACKGROUND AND PURPOSE: The gut hormone glucose-dependent insulinotropic polypeptide (GIP) signals via the GIP receptor (GIPR), resulting in postprandial potentiation of glucose-stimulated insulin secretion. The translation of results from rodent studies to human studies has been challenged by the unexpected effects of GIPR-targeting compounds. We, therefore, investigated the variation between species, focusing on GIPR desensitization and the role of the receptor C-terminus. EXPERIMENTAL APPROACH: The GIPR from humans, mice, rats, pigs, dogs and cats was studied in vitro for cognate ligand affinity, G protein activation (cAMP accumulation), recruitment of beta-arrestin and internalization. Variants of the mouse, rat and human GIPRs with swapped C-terminal tails were studied in parallel. KEY RESULTS: The human GIPR is more prone to internalization than rodent GIPRs. Despite similar agonist affinities and potencies for Gαs activation, especially, the mouse GIPR shows reduced receptor desensitization, internalization and beta-arrestin recruitment. Using an enzyme-stabilized, long-acting GIP analogue, the species differences were even more pronounced. 'Tail-swapped' human, rat and mouse GIPRs were all fully functional in their Gαs coupling, and the mouse GIPR regained internalization and beta-arrestin 2 recruitment properties with the human tail. The human GIPR lost the ability to recruit beta-arrestin 2 when its own C-terminus was replaced by the rat or mouse tail. CONCLUSIONS AND IMPLICATIONS: Desensitization of the human GIPR is dependent on the C-terminal tail. The species-dependent functionality of the C-terminal tail and the different species-dependent internalization patterns, especially between human and mouse GIPRs, are important factors influencing the preclinical evaluation of GIPR-targeting therapeutic compounds.

5.
Article in English | MEDLINE | ID: mdl-39082900

ABSTRACT

Ghrelin is an appetite-stimulating hormone secreted from the gastric mucosa in the fasting state, and secretion decreases in response to food intake. After sleeve gastrectomy (SG), plasma concentrations of ghrelin decrease markedly. Whether this affects appetite and glucose tolerance postoperatively is unknown. We investigated the effects of ghrelin infusion on appetite and glucose tolerance in individuals with obesity before and three months after SG. Twelve participants scheduled for SG were included. Before and three months after surgery, a mixed-meal test followed by an ad libitum meal test was performed with concomitant infusions of acyl-ghrelin (1 pmol/kg/min) or placebo. Infusions began 60 minutes prior to meal intake to reach a steady state before the mixed-meal and were continued throughout the study day. Two additional experimental days with 0.25 pmol/kg/min and 10 pmol/kg/min of acyl-ghrelin infusions were conducted three months after surgery. Both before and after SG, postprandial glucose concentrations increased dose-dependently during ghrelin infusions compared with placebo. Ghrelin infusions inhibited basal and postprandial insulin secretion rates, resulting in lowered measures of ß-cell function, but no effect on insulin sensitivity was seen. Ad libitum meal intake was unaffected by the administration of ghrelin. Ghrelin infusion increases postprandial plasma glucose concentrations and impairs ß-cell function before and after SG, but has no effect on ad libitum meal intake. The improved glycemic control after SG may in part be due to the permanently lower concentration of ghrelin following this procedure.

6.
Metabolites ; 14(7)2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39057718

ABSTRACT

Short-chain fatty acids (SCFAs) are the major microbial metabolites produced from the fermentation of dietary fiber in the gut. They are recognised as secretagogues of the glucagon-like peptides, GLP-1 and GLP-2, likely mediated by the activation of free fatty acid receptors 2 and 3 (FFAR2 and 3) expressed on enteroendocrine L-cells. Fiber-deficient diets are associated with decreased intestinal function and decreased colonic GLP-1 and GLP-2 content. Here, we speculated that the lowered colonic GLP-1 observed following a fiber-free diet was a consequence of decreased SCFA production and a subsequent decrease in FFAR2/3 activation. Furthermore, we explored the consequences of a fiber-free diet followed by intestinal injury, and we mechanistically explored the SCFA-FFAR2/3-GLP-1 pathway to explain the increased severity. Colonic luminal content from mice fed either a fiber-free or chow diet were analysed for SCFA content by LC-MS. FFAR2/3 receptor contributions to SCFA-mediated colonic GLP-1 secretion were assessed in isolated perfused preparations of the colon from FFAR2/3 double knockout (KO) and wild-type (WT) mice. Colitis was induced by the delivery of 3% dextran sulfate sodium (DSS) for 4 days in the drinking water of mice exposed to a fiber-free diet for 21 days. Colitis was induced by the delivery of 3% DSS for 7 days in FFAR2/3 KO mice. The removal of dietary fiber significantly decreased SCFA concentrations in the luminal contents of fiber-free fed mice compared to chow-fed mice. In the perfused colon, luminal SCFAs significantly increased colonic GLP-1 secretion in WT mice but not in FFAR2/3 KO mice. In the DSS-induced colitis model, the removal of dietary fiber increased the severity and prevented the recovery from intestinal injury. Additionally, colitis severity was similar in FFAR2/3 KO and WT mice after DSS application. In conclusion, the results confirm that the removal of dietary fiber is sufficient to decrease the colonic concentrations of SCFAs. Additionally, we show that a fiber-free diet predisposes the colon to increased intestinal injury, but this effect is independent of FFAR2 and FFAR3 signalling; therefore, it is unlikely that a fiber-free diet induces a decrease in luminal SCFAs and sensitivity to intestinal disease involves the SCFA-FFAR2/3-GLP-1 pathway.

7.
Article in English | MEDLINE | ID: mdl-38888179

ABSTRACT

BACKGROUND AND OBJECTIVE: Studies in humans and mice have demonstrated that the gut hormone glucagon-like peptide 2 (GLP-2) promotes gallbladder relaxation and refilling. Here, we assessed the effect of exogenous GLP-2 on gallbladder motility in the fasted state of healthy men with and without infusion of the potent gallbladder-contracting hormone cholecystokinin (CCK). METHODS: In a randomized, double-blind, placebo-controlled, crossover study, 15 male participants (mean [SD]: age 24.7 [3.6] years; body mass index 22.9 [1.6] kg/m2) underwent four experimental days receiving two infusions on each day: either CCK (0.4 pmol × kg-1 × min-1, time 0-180 min) + GLP-2 (10 pmol × kg-1 × min-1, time 30-240 min), CCK + placebo, placebo + GLP-2, or placebo + placebo, respectively. Gallbladder volume was measured at baseline and throughout the 4-hour study day using ultrasonography. RESULTS: Compared to placebo + placebo, GLP-2 + placebo did not affect gallbladder volume, but when infused in combination with CCK, GLP-2 completely abolished the strong gallbladder-contracting effect seen during CCK + placebo infusion, restoring baseline levels of gallbladder volume. CONCLUSION: Exogenous GLP-2 counteracts exogenous CCK-induced gallbladder emptying in healthy men, pointing to a possible therapeutic potential for GLP-2 as a relaxing modulator of gallbladder smooth muscle tone (e.g., as bridge to surgery in biliary colic). The effect may also explain the gallbladder-related adverse events reported for GLP-2 receptor agonists used in the treatment of short bowel syndrome.

8.
Article in English | MEDLINE | ID: mdl-38864544

ABSTRACT

BACKGROUND: Bile acids play vital roles in control of lipid-, glucose-, and energy metabolism by activating Takeda G protein-coupled receptor 5 (TGR5) and Farnesoid X receptor (FXR), the latter promoting production of the endocrine-acting fibroblast growth factor 19 (FGF19). Short-term administration of single bile acids has been reported to enhance plasma levels of GLP-1 and to enhance energy expenditure. However, prolonged bile acid supplementation, e.g. of chenodeoxycholic acid (CDCA) for gallstone dissolution, has been reported to have adverse effects. STUDY DESIGN: In this proof-of-concept study, we assessed the safety and metabolic effects of oral glycine-conjugated deoxycholic acid (GDCA) administration at 10 mg/kg/day using regular and slow-release capsules (mimicking physiological bile acid release) over 30 days in two groups of each 10 healthy lean men respectively. MAIN FINDINGS: GDCA increased postprandial total bile acid and FGF19 concentrations while suppressing those of the primary bile acids CDCA and cholic acid. Plasma levels of 7α-hydroxy-4-cholesten-3-one were reduced, indicating repressed hepatic bile acid synthesis. There were minimal effects on indices of lipid-, glucose-, and energy metabolism. No serious adverse events were reported during GDCA administration in either capsule types, although 50% of participants showed mild increases in plasma levels of liver transaminases and 80% (regular capsules) and 50% (slow-release capsules) of participants experienced gastrointestinal adverse events. CONCLUSION: GDCA administration leads to elevated FGF19 levels and effectively inhibits primary bile acid synthesis, supporting therapy compliance and its effectiveness. However, effects on lipid, glucose- and energy metabolism were minimal, indicating that expanding the pool of this relatively hydrophobic bile acid does not impact energy metabolism in healthy subjects.

9.
Nat Metab ; 6(7): 1268-1281, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38871982

ABSTRACT

Incretin-based therapies are highly successful in combatting obesity and type 2 diabetes1. Yet both activation and inhibition of the glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) in combination with glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) activation have resulted in similar clinical outcomes, as demonstrated by the GIPR-GLP-1R co-agonist tirzepatide2 and AMG-133 (ref. 3) combining GIPR antagonism with GLP-1R agonism. This underlines the importance of a better understanding of the GIP system. Here we show the necessity of ß-arrestin recruitment for GIPR function, by combining in vitro pharmacological characterization of 47 GIPR variants with burden testing of clinical phenotypes and in vivo studies. Burden testing of variants with distinct ligand-binding capacity, Gs activation (cyclic adenosine monophosphate production) and ß-arrestin 2 recruitment and internalization shows that unlike variants solely impaired in Gs signalling, variants impaired in both Gs and ß-arrestin 2 recruitment contribute to lower adiposity-related traits. Endosomal Gs-mediated signalling of the variants shows a ß-arrestin dependency and genetic ablation of ß-arrestin 2 impairs cyclic adenosine monophosphate production and decreases GIP efficacy on glucose control in male mice. This study highlights a crucial impact of ß-arrestins in regulating GIPR signalling and overall preservation of biological activity that may facilitate new developments in therapeutic targeting of the GIPR system.


Subject(s)
Phenotype , Receptors, Gastrointestinal Hormone , beta-Arrestins , Receptors, Gastrointestinal Hormone/genetics , Receptors, Gastrointestinal Hormone/metabolism , Animals , Mice , Humans , beta-Arrestins/metabolism , Genetic Variation , beta-Arrestin 2/metabolism , beta-Arrestin 2/genetics , Signal Transduction , Gastric Inhibitory Polypeptide/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/genetics , Obesity/metabolism , Obesity/genetics , Male , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/genetics
10.
Cardiovasc Res ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832935

ABSTRACT

AIMS: Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are increasingly used to treat type 2 diabetes and obesity. Albeit cardiovascular outcomes generally improve, treatment with GLP-1 RAs is associated with increased heart rate, the mechanism of which is unclear. METHODS AND RESULTS: We employed a large animal model, the female landrace pig, and used multiple in-vivo and ex-vivo approaches including pharmacological challenges, electrophysiology and high-resolution mass spectrometry to explore how GLP-1 elicits an increase in heart rate. In anaesthetized pigs, neither cervical vagotomy, adrenergic blockers (alpha, beta or combined alpha-beta blockade), ganglionic blockade (hexamethonium) nor inhibition of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels (ivabradine) abolished the marked chronotropic effect of GLP-1. GLP-1 administration to isolated perfused pig hearts also increased heart rate, which was abolished by GLP-1 receptor blockade. Electrophysiological characterization of GLP-1 effects in vivo and in isolated perfused hearts localized electrical modulation to the atria and conduction system. In isolated sinus nodes, GLP-1 administration shortened action potential cycle length of pacemaker cells and shifted the site of earliest activation. The effect was independent of HCN blockade. Collectively, these data support a direct effect of GLP-1 on GLP-1 receptors within the heart. Consistently, single nucleus RNA sequencing (snRNAseq) showed GLP-1 receptor expression in porcine pacemaker cells. Quantitative phosphoproteomics analyses of sinus node samples revealed that GLP-1 administration leads to phosphorylation changes of calcium cycling proteins of the sarcoplasmic reticulum, known to regulate heart rate. CONCLUSION: GLP-1 has direct chronotropic effects on the heart mediated by GLP-1 receptors in pacemaker cells of the sinus node, inducing changes in action potential morphology and the leading pacemaker site through a calcium signaling response characterized by PKA-dependent phosphorylation of Ca2+ cycling proteins involved in pace making. Targeting the pacemaker calcium clock may be a strategy to lower heart rate in GLP-1 RA recipients.

11.
Article in English | MEDLINE | ID: mdl-38884652

ABSTRACT

RATIONALE: Glucagon-like peptide-1 (GLP-1) receptor agonists reduce alcohol consumption in rodents and non-human primates. Semaglutide is a new long-acting GLP-1 receptor agonist, widely used in the clinic against type 2 diabetes and obesity. It is also reported to reduce alcohol intake in rodents. OBJECTIVES: This study investigates the possible inhibitory effect of semaglutide on alcohol intake in alcohol-preferring African green monkeys. METHODS: We performed a vehicle-controlled study on male monkeys that had demonstrated a preference for alcohol. In the monkeys selected for voluntary alcohol drinking, alcohol consumption was measured for ten days at baseline (Monday to Friday for two weeks). During this period, the monkeys had access to alcohol 4 h per day and free access to water 24 h per day. After two weeks of baseline measurements, the monkeys were randomized to semaglutide or vehicle. Each group consisted of ten monkeys, and the two groups were balanced with respect to baseline alcohol intake. Following the baseline period, the monkeys were treated with escalating doses of semaglutide (up to 0.05 mg/kg) or vehicle subcutaneously twice weekly for two weeks during which period alcohol was not available. After uptitration, the monkeys had access to alcohol 4 h daily for 20 days (Monday to Friday for 4 weeks), and alcohol consumption was measured. During this alcohol exposure period, treatment with semaglutide (0.05 mg/kg twice weekly) or vehicle continued for three weeks followed by a one-week washout period. RESULTS: Compared to the vehicle, semaglutide significantly reduced alcohol intake. There were no signs of emetic events or changes in water intake. CONCLUSIONS: These data demonstrate for the first time the potent effect of semaglutide in reducing voluntary alcohol intake in non-human primates and further substantiate the need for clinical trials investigating the effect of semaglutide in patients with alcohol-use disorder.

12.
Eur J Endocrinol ; 190(6): 446-457, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38781444

ABSTRACT

OBJECTIVE: The metabolic phenotype of totally pancreatectomised patients includes hyperaminoacidaemia and predisposition to hypoglycaemia and hepatic lipid accumulation. We aimed to investigate whether the loss of pancreatic glucagon may be responsible for these changes. METHODS: Nine middle-aged, normal-weight totally pancreatectomised patients, nine patients with type 1 diabetes (C-peptide negative), and nine matched controls underwent two separate experimental days, each involving a 150-min intravenous infusion of glucagon (4 ng/kg/min) or placebo (saline) under fasting conditions while any basal insulin treatment was continued. RESULTS: Glucagon infusion increased plasma glucagon to similar high physiological levels in all groups. The infusion increased hepatic glucose production and decreased plasma concentration of most amino acids in all groups, with more pronounced effects in the totally pancreatectomised patients compared with the other groups. Glucagon infusion diminished fatty acid re-esterification and tended to decrease plasma concentrations of fatty acids in the totally pancreatectomised patients but not in the type 1 diabetes patients. CONCLUSION: Totally pancreatectomised patients were characterised by increased sensitivity to exogenous glucagon at the level of hepatic glucose, amino acid, and lipid metabolism, suggesting that the metabolic disturbances characterising these patients may be rooted in perturbed hepatic processes normally controlled by pancreatic glucagon.


Subject(s)
Diabetes Mellitus, Type 1 , Glucagon , Liver , Pancreatectomy , Humans , Glucagon/blood , Glucagon/metabolism , Male , Middle Aged , Female , Liver/metabolism , Liver/drug effects , Adult , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/blood , Lipid Metabolism/drug effects , Blood Glucose/metabolism , Blood Glucose/drug effects , Amino Acids/metabolism , Amino Acids/administration & dosage , Amino Acids/blood , Glucose/metabolism
13.
Peptides ; 179: 171242, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38782050

ABSTRACT

Oxytocin has been proposed to possess glucose-stabilizing effects through the release of insulin and glucagon from the pancreas. Also, exogenous oxytocin has been shown to stimulate extrapancreatic glucagon secretion in depancreatized dogs. Here, we investigated the effect of exogenous oxytocin on circulating levels of pancreatic and gut-derived glucose-stabilizing hormones (insulin [measured as C-peptide], glucagon, glucagon-like peptide 1 [GLP-1], and glucose-dependent insulinotropic polypeptide). We studied nine pancreatectomized (PX) patients and nine healthy controls (CTRLs) (matched on age and body mass index) before, during, and after an intravenous infusion of 10 IU of oxytocin administered over 12 min. Oxytocin did not increase plasma glucagon levels, nor induce any changes in plasma glucose, C-peptide, or GIP in any of the groups. Oxytocin decreased plasma glucagon levels by 19 ± 10 % in CTRLs (from 2.0 ± 0.5 [mean ± SEM] to 1.3 ± 0.2 pmol/l, P = 0.0025) and increased GLP-1 by 42 ± 22 % in PX patients (from 9.0 ± 1.0-12.7 ± 1.0 pmol/l, P = 0.0003). Fasting plasma glucose levels were higher in PX patients compared with CTRLs (13.1 ± 1.1 vs. 5.1 ± 0.1 mmol/l, P < 0.0001). In conclusion, the present findings do not support pancreas-mediated glucose-stabilizing effects of acute oxytocin administration in humans and warrant further investigation of oxytocin's gluco-metabolic effects.


Subject(s)
Blood Glucose , Gastric Inhibitory Polypeptide , Glucagon-Like Peptide 1 , Glucagon , Insulin , Oxytocin , Pancreatectomy , Humans , Oxytocin/pharmacology , Oxytocin/administration & dosage , Oxytocin/blood , Oxytocin/metabolism , Male , Glucagon/blood , Glucagon/metabolism , Female , Middle Aged , Blood Glucose/metabolism , Glucagon-Like Peptide 1/blood , Glucagon-Like Peptide 1/metabolism , Insulin/blood , Insulin/metabolism , Gastric Inhibitory Polypeptide/blood , Gastric Inhibitory Polypeptide/metabolism , Aged , Adult , C-Peptide/blood , C-Peptide/metabolism
14.
Diabetologia ; 67(7): 1386-1398, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38662135

ABSTRACT

AIMS/HYPOTHESIS: Exercise has a profound effect on insulin sensitivity in skeletal muscle. The euglycaemic-hyperinsulinaemic clamp (EHC) is the gold standard for assessment of insulin sensitivity but it does not reflect the hyperglycaemia that occurs after eating a meal. In previous EHC investigations, it has been shown that the interstitial glucose concentration in muscle is decreased to a larger extent in previously exercised muscle than in rested muscle. This suggests that previously exercised muscle may increase its glucose uptake more than rested muscle if glucose supply is increased by hyperglycaemia. Therefore, we hypothesised that the exercise-induced increase in muscle insulin sensitivity would appear greater after eating a meal than previously observed with the EHC. METHODS: Ten recreationally active men performed dynamic one-legged knee extensor exercise for 1 h. Following this, both femoral veins and one femoral artery were cannulated. Subsequently, 4 h after exercise, a solid meal followed by two liquid meals were ingested over 1 h and glucose uptake in the two legs was measured for 3 h. Muscle biopsies from both legs were obtained before the meal test and 90 min after the meal test was initiated. Data obtained in previous studies using the EHC (n=106 participants from 13 EHC studies) were used for comparison with the meal-test data obtained in this study. RESULTS: Plasma glucose and insulin peaked 45 min after initiation of the meal test. Following the meal test, leg glucose uptake and glucose clearance increased twice as much in the exercised leg than in the rested leg; this difference is twice as big as that observed in previous investigations using EHCs. Glucose uptake in the rested leg plateaued after 15 min, alongside elevated muscle glucose 6-phosphate levels, suggestive of compromised muscle glucose metabolism. In contrast, glucose uptake in the exercised leg plateaued 45 min after initiation of the meal test and there were no signs of compromised glucose metabolism. Phosphorylation of the TBC1 domain family member 4 (TBC1D4; p-TBC1D4Ser704) and glycogen synthase activity were greater in the exercised leg compared with the rested leg. Muscle interstitial glucose concentration increased with ingestion of meals, although it was 16% lower in the exercised leg than in the rested leg. CONCLUSIONS/INTERPRETATION: Hyperglycaemia after meal ingestion results in larger differences in muscle glucose uptake between rested and exercised muscle than previously observed during EHCs. These findings indicate that the ability of exercise to increase insulin-stimulated muscle glucose uptake is even greater when evaluated with a meal test than has previously been shown with EHCs.


Subject(s)
Blood Glucose , Exercise , Glucose Clamp Technique , Insulin Resistance , Insulin , Meals , Muscle, Skeletal , Humans , Male , Exercise/physiology , Muscle, Skeletal/metabolism , Insulin Resistance/physiology , Adult , Blood Glucose/metabolism , Insulin/metabolism , Insulin/blood , Young Adult , Meals/physiology
15.
Eur J Endocrinol ; 190(4): 314-326, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38551029

ABSTRACT

OBJECTIVE: Colesevelam, a bile acid sequestrant approved for the treatment of hypercholesterolaemia, improves glycaemic control in type 2 diabetes. We hypothesised that single-dose colesevelam increases postprandial GLP-1 secretion, thus, reducing postprandial glucose excursions in individuals with type 2 diabetes. Further, we explored the effects of single-dose colesevelam on ultrasonography-assessed postprandial gallbladder motility, paracetamol absorption (proxy for gastric emptying), and circulating factors known to affect gallbladder motility. METHODS: In a randomised, double-blind, placebo-controlled crossover study, 12 individuals with type 2 diabetes (mean ± SD: age 61 ± 8.8 years; body mass index 29.8 ± 3.0 kg/m2) were subjected to 4 mixed meal tests on separate days; 2 with orally administered colesevelam (3.75 g) and 2 with placebo, with intravenous infusion of the GLP-1 receptor antagonist exendin(9-39)NH2 or saline. RESULTS: Single-dose colesevelam had no effect on postprandial concentrations of glucose (P = .786), C-peptide (P = .440), or GLP-1 (P = .729), and exendin(9-39)NH2 administration revealed no GLP-1-mediated effects of colesevelam. Colesevelam did not affect gallbladder emptying but abolished gallbladder refilling (P = .001), increased postprandial cholecystokinin (CCK) secretion (P = .010), and decreased postprandial serum concentrations of fibroblast growth factor 19 (FGF19) (P = .035) and bile acids (P = .043). CONCLUSION: Single-dose colesevelam had no effect on postprandial GLP-1 responses or glucose tolerance but disrupted postprandial gallbladder refilling by increasing CCK secretion and reducing circulating concentrations of FGF19 and bile acids. These findings leave the antidiabetic actions of colesevelam unresolved but provide mechanistic insights into its effect on gallbladder motility.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon-Like Peptide 1 , Humans , Middle Aged , Aged , Colesevelam Hydrochloride/pharmacology , Colesevelam Hydrochloride/therapeutic use , Gallbladder/metabolism , Cross-Over Studies , Blood Glucose/metabolism , Glucose/metabolism , Bile Acids and Salts , Postprandial Period
16.
Diabetes ; 73(5): 671-681, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38295385

ABSTRACT

Dipeptidyl peptidase 4 (DPP-4) and neprilysin (NEP) rapidly degrade glucagon-like peptide 1 (GLP-1) in mice. Commercially available sandwich ELISA kits may not accurately detect the degradation products, leading to potentially misleading results. We aimed to stabilize GLP-1 in mice, allowing reliable measurement with sensitive commercially available ELISA kits. Nonanesthetized male C57Bl/6JRj mice were subjected to an oral glucose tolerance test (OGTT; 2 g/kg glucose), and plasma total and intact GLP-1 were measured (Mercodia and Alpco ELISA kits, respectively). No GLP-1 increases were seen in samples taken beyond 15 min after the glucose load. Samples taken at 5 and 10 min after the OGTT showed a minor increase in total, but not intact, GLP-1. We then administered saline (control), or a DPP-4 inhibitor (valine pyrrolidide or sitagliptin) with or without an NEP-inhibitor (sacubitril), 30 min before the OGTT. In the inhibitor groups only, intact GLP-1 increased significantly during the OGTT. After injecting male C57Bl/6JRj mice with a known dose of GLP-1(7-36)NH2, peak GLP-1 levels were barely detectable after saline but were 5- to 10-fold higher during sitagliptin and the combination of sitagliptin/sacubitril. The half-life of the GLP-1 plasma disappearance increased up to sevenfold during inhibitor treatment. We conclude that reliable measurement of GLP-1 secretion is not possible in mice in vivo with commercially available sandwich ELISA kits, unless degradation is prevented by inhibition of DPP-4 and perhaps NEP. The described approach allows improved estimates of GLP-1 secretion for future studies, although it is a limitation that these inhibitors additionally influence levels of insulin and glucagon.


Subject(s)
Aminobutyrates , Biphenyl Compounds , Dipeptidyl-Peptidase IV Inhibitors , Glucagon-Like Peptide 1 , Male , Mice , Animals , Glucagon-Like Peptide 1/metabolism , Blood Glucose/metabolism , Dipeptidyl Peptidase 4/metabolism , Glucose/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Sitagliptin Phosphate/pharmacology
17.
J Clin Endocrinol Metab ; 109(7): 1773-1780, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38217866

ABSTRACT

CONTEXT: Individuals with type 2 diabetes (T2D) have an increased risk of bone fractures despite normal or increased bone mineral density. The underlying causes are not well understood but may include disturbances in the gut-bone axis, in which both glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-2 (GLP-2) are regulators of bone turnover. Thus, in healthy fasting participants, both exogenous GIP and GLP-2 acutely reduce bone resorption. OBJECTIVE: The objective of this study was to investigate the acute effects of subcutaneously administered GIP and GLP-2 on bone turnover in individuals with T2D. METHODS: We included 10 men with T2D. Participants met fasting in the morning on 3 separate test days and were injected subcutaneously with GIP, GLP-2, or placebo in a randomized crossover design. Blood samples were drawn at baseline and regularly after injections. Bone turnover was estimated by circulating levels of collagen type 1 C-terminal telopeptide (CTX), procollagen type 1 N-terminal propeptide (P1NP), sclerostin, and PTH. RESULTS: GIP and GLP-2 significantly reduced CTX to (mean ± SEM) 66 ± 7.8% and 74 ± 5.9% of baseline, respectively, compared with after placebo (P = .001). In addition, P1NP and sclerostin increased acutely after GIP whereas a decrease in P1NP was seen after GLP-2. PTH levels decreased to 67 ± 2.5% of baseline after GLP-2 and to only 86 ± 3.4% after GIP. CONCLUSION: Subcutaneous GIP and GLP-2 affect CTX and P1NP in individuals with T2D to the same extent as previously demonstrated in healthy individuals.


Subject(s)
Bone Remodeling , Cross-Over Studies , Diabetes Mellitus, Type 2 , Gastric Inhibitory Polypeptide , Glucagon-Like Peptide 2 , Humans , Gastric Inhibitory Polypeptide/blood , Male , Glucagon-Like Peptide 2/blood , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/blood , Bone Remodeling/drug effects , Middle Aged , Aged , Adult , Bone Density/drug effects
18.
Diabetes Care ; 47(1): 71-80, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37703527

ABSTRACT

OBJECTIVE: Insulin remains the only glucose-lowering treatment modality recommended for totally pancreatectomized patients. We investigated the effects of the sodium-glucose cotransporter 2 inhibitor empagliflozin on fasting and postprandial glucose concentrations in pancreatectomized patients and matched healthy control participants. RESEARCH DESIGN AND METHODS: In a randomized, double-blind, placebo-controlled crossover study, 10 pancreatectomized patients and 10 matched control participants underwent two 3-h liquid mixed meal tests preceded by two doses of 25 mg empagliflozin (administered the night before and in the morning of the meal test) or placebo, respectively. Basal insulin was administered as usual, but bolus insulin was omitted before the meal test during experimental days. RESULTS: Compared with placebo, empagliflozin lowered fasting plasma glucose (5.0 ± 0.4 vs. 7.9 ± 0.9 mmol/L [mean ± SEM], P = 0.007) and postprandial plasma glucose excursions as assessed by baseline-subtracted area under the curve (1,080 [733; 1,231] vs. 1,169 [1,036; 1,417] pmol/L × min [median (25th and 75th percentiles)], P = 0.014) in the pancreatectomized patients. In the control participants, empagliflozin lowered fasting plasma glucose compared with placebo (5.1 ± 0.1 vs. 5.5 ± 0.1 mmol/L, P = 0.008) without affecting postprandial glucose excursions significantly. The pancreatomy group exhibited greater postprandial glucagon excursions compared with the control group on both experimental days (P ≤ 0.015); no within-group differences between days were observed. CONCLUSIONS: Empagliflozin administered the day before and immediately before a standardized liquid mixed meal test normalized fasting hyperglycemia and improved postprandial glucose tolerance in pancreatectomized patients.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperglycemia , Humans , Diabetes Mellitus, Type 2/drug therapy , Cross-Over Studies , Blood Glucose , Hyperglycemia/drug therapy , Hyperglycemia/prevention & control , Insulin/therapeutic use , Fasting , Glucose/therapeutic use , Double-Blind Method , Postprandial Period
19.
Diabetes Obes Metab ; 26(4): 1252-1263, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38151760

ABSTRACT

AIM: Bile acid sequestrants are cholesterol-lowering drugs, which also improve glycaemic control in people with type 2 diabetes. The mechanism behind the glucose-lowering effect is unknown but has been proposed to be mediated by increased glucagon-like peptide-1 (GLP-1) secretion. Here, we investigated the glucose-lowering effects of sevelamer including any contribution from GLP-1 in people with type 2 diabetes. MATERIALS AND METHODS: In a randomized, double-blind, placebo-controlled, crossover study, 15 people with type 2 diabetes on metformin monotherapy underwent two 17-day treatment periods with the bile acid sequestrant sevelamer and placebo, respectively, in a randomized order and with an interposed wash-out period of minimum 6 weeks. On days 15 and 17 of each treatment period, participants underwent experimental days with 4-h liquid meal tests and application of concomitant infusion of exendin(9-39)NH2 or saline. RESULTS: Compared with placebo, sevelamer improved insulin sensitivity (assessed by homeostatic model assessment of insulin resistance) and beta-cell sensitivity to glucose and lowered fasting and postprandial plasma glucose concentrations. In both treatment periods, exendin(9-39)NH2 increased postprandial glucose excursions compared with saline but without absolute or relative difference between the two treatment periods. In contrast, exendin(9-39)NH2 abolished the sevelamer-induced improvement in beta-cell glucose sensitivity. CONCLUSIONS: The bile acid sequestrant sevelamer improved insulin sensitivity and beta-cell sensitivity to glucose, but using the GLP-1 receptor antagonist exendin(9-39)NH2 we were not able to detect a GLP-1-mediated glucose-lowering effect of sevelamer in individuals with type 2 diabetes. Nevertheless, the sevelamer-induced improvement of beta-cell sensitivity to glucose was shown to be GLP-1-dependent.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Diabetes Mellitus, Type 2/drug therapy , Sevelamer/pharmacology , Sevelamer/therapeutic use , Cross-Over Studies , Blood Glucose , Glucagon-Like Peptide 1 , Glucose/therapeutic use , Amines/therapeutic use , Bile Acids and Salts , Insulin/therapeutic use
20.
Article in English | MEDLINE | ID: mdl-38087928

ABSTRACT

CONTEXT: Pediatric obesity is characterized by insulin resistance, yet it remains unclear whether insulin resistance contributes to abnormalities in glucagon and incretin secretion. OBJECTIVE: To examine whether fasting and stimulated glucagon, GLP-1, and GIP concentrations differ between children and adolescents with obesity and insulin resistance (OIR), obesity and normal insulin sensitivity (OIS), and controls with normal weight (NW). METHODS: 80 (34 boys) children and adolescents, aged 7-17 years with OIR (n=22), OIS (n=22), and NW (n=36) underwent an oral glucose tolerance test with measurements of serum insulin, plasma glucose, glucagon, total GLP-1, and total GIP. Homeostatic model assessment of insulin resistance (HOMA-IR), single point insulin sensitivity estimator (SPISE), Matsuda index, insulinogenic index (IGI), and oral disposition index (ODI) were calculated. RESULTS: Fasting concentrations of glucagon and GLP-1 were higher in the OIR-group, with no significant differences for GIP. The OIR-group had higher glucagon total area under the curve (tAUC0-120) and lower GLP-1 incremental AUC (iAUC0-120), with no significant differences for GIP iAUC0-120. Higher fasting glucagon was associated with higher HOMA-IR, lower Matsuda index, lower SPISE, higher IGI, and higher plasma alanine transaminase, whereas higher fasting GLP-1 was associated with higher HOMA-IR, lower Matsuda index, and lower ODI. Higher glucagon tAUC0-120 was associated lower SPISE and lower Matsuda index, whereas lower GLP-1 iAUC0-120 was associated with a higher HOMA-IR, lower Matsuda index, and lower ODI. CONCLUSIONS: The OIR-group had elevated fasting concentrations of glucagon and GLP-1, and higher glucagon, but lower GLP-1 responses during an OGTT compared to the OIS- and NW-groups. In contrast, the OIS-group had similar hormone responses to the NW-group.

SELECTION OF CITATIONS
SEARCH DETAIL