Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Lett ; 505: 75-86, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33609609

ABSTRACT

In many tumors, CD73 (NT5E), a rate-limiting enzyme in adenosine biosynthesis, is upregulated by TGF-ß and drives tumor progression. Conversely, CD73 is downregulated in endometrial carcinomas (EC) despite a TGF-ß-rich environment. Through gene expression analyses of normal endometrium samples of the uterine cancer TCGA data set and genetic and pharmacological studies, we discovered CD73 loss shifts TGF-ß1 from tumor suppressor to promoter in EC. TGF-ß1 upregulated CD73 and epithelial integrity in vivo in the normal endometrium and in vitro in early stage EC cells. With loss of CD73, TGF-ß1-mediated epithelial integrity was abrogated. EC cells developed TGF-ß1-mediated stress fibers and macromolecule permeability, migration, and invasion increased. In human tumors, CD73 is downregulated in deeply invasive stage I EC. Consistent with shifting TGF-ß1 activity, CD73 loss increased TGF-ß1-mediated canonical signaling and upregulated cyclin D1 (CCND1) and downregulated p21 expression. This shift was clinically relevant, as CD73Low/CCND1High expression associated with poor tumor differentiation, increased myometrial and lymphatic/vascular space invasion, and patient death. Further loss of CD73 in CD73Low expressing advanced stage EC cells increased TGF-ß-mediated stress fibers, signaling, and invasiveness, whereby adenosine A1 receptor agonist, CPA, dampened TGF-ß-mediated invasion. These data identify CD73 loss as essential for shifting TGF-ß activity in EC.


Subject(s)
5'-Nucleotidase/physiology , Endometrial Neoplasms/pathology , Transforming Growth Factor beta1/physiology , Tumor Suppressor Proteins/physiology , Adenosine/physiology , Adult , Aged , Animals , Cell Differentiation , Cell Line, Tumor , Female , GPI-Linked Proteins/physiology , Humans , Mice , Mice, Inbred C57BL , Middle Aged , Neoplasm Staging
2.
Front Immunol ; 11: 508, 2020.
Article in English | MEDLINE | ID: mdl-32351498

ABSTRACT

CD73, a cell surface 5'nucleotidase that generates adenosine, has emerged as an attractive therapeutic target for reprogramming cancer cells and the tumor microenvironment to dampen antitumor immune cell evasion. Decades of studies have paved the way for these findings, starting with the discovery of adenosine signaling, particularly adenosine A2A receptor (A2AR) signaling, as a potent suppressor of tissue-devastating immune cell responses, and evolving with studies focusing on CD73 in breast cancer, melanoma, and non-small cell lung cancer. Gastrointestinal (GI) cancers are a major cause of cancer-related deaths. Evidence is mounting that shows promise for improving patient outcomes through incorporation of immunomodulatory strategies as single agents or in combination with current treatment options. Recently, several immune checkpoint inhibitors received FDA approval for use in GI cancers; however, clinical benefit is limited. Investigating molecular mechanisms promoting immunosuppression, such as CD73, in GI cancers can aid in current efforts to extend the efficacy of immunotherapy to more patients. In this review, we discuss current clinical and basic research studies on CD73 in GI cancers, including gastric, liver, pancreatic, and colorectal cancer, with special focus on the potential of CD73 as an immunotherapy target in these cancers. We also present a summary of current clinical studies targeting CD73 and/or A2AR and combination of these therapies with immune checkpoint inhibitors.


Subject(s)
5'-Nucleotidase/metabolism , Gastrointestinal Neoplasms/therapy , Immunotherapy/methods , Animals , Gastrointestinal Neoplasms/immunology , Humans , Immune Tolerance , Immunomodulation , Receptor, Adenosine A2A/metabolism , Signal Transduction , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...