Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
2.
Cell Rep Med ; 5(3): 101437, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38428428

ABSTRACT

Leber hereditary optic neuropathy (LHON) is a mitochondrial disease leading to rapid and severe bilateral vision loss. Idebenone has been shown to be effective in stabilizing and restoring vision in patients treated within 1 year of onset of vision loss. The open-label, international, multicenter, natural history-controlled LEROS study (ClinicalTrials.gov NCT02774005) assesses the efficacy and safety of idebenone treatment (900 mg/day) in patients with LHON up to 5 years after symptom onset (N = 199) and over a treatment period of 24 months, compared to an external natural history control cohort (N = 372), matched by time since symptom onset. LEROS meets its primary endpoint and confirms the long-term efficacy of idebenone in the subacute/dynamic and chronic phases; the treatment effect varies depending on disease phase and the causative mtDNA mutation. The findings of the LEROS study will help guide the clinical management of patients with LHON.


Subject(s)
Optic Atrophy, Hereditary, Leber , Ubiquinone/analogs & derivatives , Humans , Optic Atrophy, Hereditary, Leber/drug therapy , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/diagnosis , Antioxidants/therapeutic use , Ubiquinone/therapeutic use , Ubiquinone/genetics , Mutation
3.
Front Plant Sci ; 14: 1252456, 2023.
Article in English | MEDLINE | ID: mdl-38053760

ABSTRACT

Heat stress is a major environmental constraint limiting tomato production. Tomato wild relatives Solanum pennellii and S. peruvianum are known for their drought tolerance but their heat stress responses have been less investigated, especially when used as rootstocks for grafting. This study aimed to evaluate the physiological and biochemical heat stress responses of tomato seedlings grafted onto a commercial 'Maxifort' and wild relative S. pennellii and S. peruvianum rootstocks. 'Celebrity' and 'Arkansas Traveler' tomato scion cultivars, previously characterized as heat-tolerant and heat-sensitive, respectively, were grafted onto the rootstocks or self-grafted as controls. Grafted seedlings were transplanted into 10-cm pots and placed in growth chambers set at high (38/30°C, day/night) and optimal (26/19°C) temperatures for 21 days during the vegetative stage. Under heat stress, S. peruvianum-grafted tomato seedlings had an increased leaf proline content and total non-enzymatic antioxidant capacity in both leaves and roots. Additionally, S. peruvianum-grafted plants showed more heat-tolerant responses, evidenced by their increase in multiple leaf antioxidant enzyme activities (superoxide dismutase, catalase and peroxidase) compared to self-grafted and 'Maxifort'-grafted plants. S. pennellii-grafted plants had similar or higher activities in all antioxidant enzymes than other treatments at optimal temperature conditions but significantly lower activities under heat stress conditions, an indication of heat sensitivity. Both S. pennellii and S. peruvianum-grafted plants had higher leaf chlorophyll content, chlorophyll fluorescence and net photosynthetic rate under heat stress, while their plant growth was significantly lower than self-grafted and 'Maxifort'-grafted plants possibly from graft incompatibility. Root abscisic acid (ABA) contents were higher in 'Maxifort' and S. peruvianum rootstocks, but no ABA-induced antioxidant activities were detected in either leaves or roots. In conclusion, the wild relative rootstock S. peruvianum was effective in enhancing the thermotolerance of scion tomato seedlings, showing potential as a breeding material for the introgression of heat-tolerant traits in interspecific tomato rootstocks.

5.
Neurobiol Dis ; 188: 106337, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37918758

ABSTRACT

Dementia with Lewy bodies and Parkinson's disease dementia are common neurodegenerative diseases that share similar neuropathological profiles and spectra of clinical symptoms but are primarily differentiated by the order in which symptoms manifest. The question of whether a distinct molecular pathological profile could distinguish these disorders is yet to be answered. However, in recent years, studies have begun to investigate genomic, epigenomic, transcriptomic and proteomic differences that may differentiate these disorders, providing novel insights in to disease etiology. In this review, we present an overview of the clinical and pathological hallmarks of Lewy body dementias before summarizing relevant research into genetic, epigenetic, transcriptional and protein signatures in these diseases, with a particular interest in those resolving "omic" level changes. We conclude by suggesting future research directions to address current gaps and questions present within the field.


Subject(s)
Dementia , Lewy Body Disease , Parkinson Disease , Humans , Lewy Body Disease/genetics , Lewy Body Disease/pathology , Dementia/pathology , Parkinson Disease/pathology , Proteomics , Lewy Bodies/pathology
6.
Mol Ther Nucleic Acids ; 34: 102066, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38034032

ABSTRACT

The European Cooperation in Science and Technology (COST) is an intergovernmental organization dedicated to funding and coordinating scientific and technological research in Europe, fostering collaboration among researchers and institutions across countries. Recently, COST Action funded the "Genome Editing to treat Human Diseases" (GenE-HumDi) network, uniting various stakeholders such as pharmaceutical companies, academic institutions, regulatory agencies, biotech firms, and patient advocacy groups. GenE-HumDi's primary objective is to expedite the application of genome editing for therapeutic purposes in treating human diseases. To achieve this goal, GenE-HumDi is organized in several working groups, each focusing on specific aspects. These groups aim to enhance genome editing technologies, assess delivery systems, address safety concerns, promote clinical translation, and develop regulatory guidelines. The network seeks to establish standard procedures and guidelines for these areas to standardize scientific practices and facilitate knowledge sharing. Furthermore, GenE-HumDi aims to communicate its findings to the public in accessible yet rigorous language, emphasizing genome editing's potential to revolutionize the treatment of many human diseases. The inaugural GenE-HumDi meeting, held in Granada, Spain, in March 2023, featured presentations from experts in the field, discussing recent breakthroughs in delivery methods, safety measures, clinical translation, and regulatory aspects related to gene editing.

7.
Res Sq ; 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37790398

ABSTRACT

Parkinson's disease is a highly heterogeneous disorder, encompassing a complex spectrum of clinical presentation including motor, sleep, cognitive and neuropsychiatric symptoms. We aimed to investigate genome-wide DNA methylation networks in post-mortem Parkinson's disease brain samples and test for region-specific association with common neuropsychiatric and cognitive symptoms. Of traits tested, we identify a co-methylation module in the substantia nigra with significant correlation to depressive symptoms and with ontological enrichment for terms relevant to neuronal and synaptic processes. Notably, expression of the genes annotated to the methylation loci present within this module are found to be significantly enriched in neuronal subtypes within the substantia nigra. These findings highlight the potential involvement of neuronal-specific changes within the substantia nigra with regard to depressive symptoms in Parkinson's disease.

8.
Eye (Lond) ; 37(12): 2416-2425, 2023 08.
Article in English | MEDLINE | ID: mdl-37185957

ABSTRACT

Historically, distinct mitochondrial syndromes were recognised clinically by their ocular features. Due to their predilection for metabolically active tissue, mitochondrial diseases frequently involve the eye, resulting in a range of ophthalmic manifestations including progressive external ophthalmoplegia, retinopathy and optic neuropathy, as well as deficiencies of the retrochiasmal visual pathway. With the wider availability of genetic testing in clinical practice, it is now recognised that genotype-phenotype correlations in mitochondrial diseases can be imprecise: many classic syndromes can be associated with multiple genes and genetic variants, and the same genetic variant can have multiple clinical presentations, including subclinical ophthalmic manifestations in individuals who are otherwise asymptomatic. Previously considered rare diseases with no effective treatments, considerable progress has been made in our understanding of mitochondrial diseases with new therapies emerging, in particular, gene therapy for inherited optic neuropathies.


Subject(s)
Mitochondrial Diseases , Optic Nerve Diseases , Retinal Diseases , Humans , Syndrome , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/genetics , Mitochondrial Diseases/therapy , Mitochondria/genetics , Mitochondria/metabolism , Optic Nerve Diseases/complications , Retinal Diseases/complications
9.
NPJ Parkinsons Dis ; 8(1): 150, 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36344548

ABSTRACT

Cognitive impairment is a debilitating symptom in Parkinson's disease (PD). We aimed to establish an accurate multivariate machine learning (ML) model to predict cognitive outcome in newly diagnosed PD cases from the Parkinson's Progression Markers Initiative (PPMI). Annual cognitive assessments over an 8-year time span were used to define two cognitive outcomes of (i) cognitive impairment, and (ii) dementia conversion. Selected baseline variables were organized into three subsets of clinical, biofluid and genetic/epigenetic measures and tested using four different ML algorithms. Irrespective of the ML algorithm used, the models consisting of the clinical variables performed best and showed better prediction of cognitive impairment outcome over dementia conversion. We observed a marginal improvement in the prediction performance when clinical, biofluid, and epigenetic/genetic variables were all included in one model. Several cerebrospinal fluid measures and an epigenetic marker showed high predictive weighting in multiple models when included alongside clinical variables.

10.
Eur J Hum Genet ; 30(7): 848-855, 2022 07.
Article in English | MEDLINE | ID: mdl-35534703

ABSTRACT

Autosomal dominant optic atrophy (DOA) is an inherited optic neuropathy that results in progressive, bilateral visual acuity loss and field defects. OPA1 is the causative gene in around 60% of cases of DOA. The majority of patients have a pure ocular phenotype, but 20% have extra-ocular features (DOA +). We report on a patient with DOA + manifesting as bilateral optic atrophy, spastic paraparesis, urinary incontinence and white matter changes in the central nervous system associated with a novel heterozygous splice variant NM_015560.2(OPA1):c.2356-1 G > T. Further characterisation, which was performed using fibroblasts obtained from a skin biopsy, demonstrated that this variant altered mRNA splicing of the OPA1 transcript, specifically a 21 base pair deletion at the start of exon 24, NM_015560.2(OPA1):p.Cys786_Lys792del. The majority of variant transcripts were shown to escape nonsense-mediated decay and modelling of the predicted protein structure suggests that the in-frame 7 amino acid deletion may affect OPA1 oligomerisation. Fibroblasts carrying the c.2356-1 G > T variant demonstrated impaired mitochondrial bioenergetics, membrane potential, increased cell death, and disrupted and fragmented mitochondrial networks in comparison to WT cells. This study suggests that the c.2356-1 G > T OPA1 splice site variant leads to a cryptic splice site activation and may manifest in a dominant-negative manner, which could account for the patient's severe syndromic phenotype.


Subject(s)
Optic Atrophy, Autosomal Dominant , RNA Splice Sites , GTP Phosphohydrolases/genetics , Humans , Mitochondria/genetics , Mitochondria/pathology , Mutation , Optic Atrophy, Autosomal Dominant/genetics , Optic Atrophy, Autosomal Dominant/pathology
11.
J Neuroophthalmol ; 42(1): 35-44, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34629400

ABSTRACT

BACKGROUND: Inherited optic neuropathies (IONs) cause progressive irreversible visual loss in children and young adults. There are limited disease-modifying treatments, and most patients progress to become severely visually impaired, fulfilling the legal criteria for blind registration. The seminal discovery of the technique for reprogramming somatic nondividing cells into induced pluripotent stem cells (iPSCs) has opened several exciting opportunities in the field of ION research and treatment. EVIDENCE ACQUISITION: A systematic review of the literature was conducted with PubMed using the following search terms: autosomal dominant optic atrophy, ADOA, dominant optic atrophy, DOA, Leber hereditary optic neuropathy, LHON, optic atrophy, induced pluripotent stem cell, iPSC, iPSC derived, iPS, stem cell, retinal ganglion cell, and RGC. Clinical trials were identified on the ClinicalTrials.gov website. RESULTS: This review article is focused on disease modeling and the therapeutic strategies being explored with iPSC technologies for the 2 most common IONs, namely, dominant optic atrophy and Leber hereditary optic neuropathy. The rationale and translational advances for cell-based and gene-based therapies are explored, as well as opportunities for neuroprotection and drug screening. CONCLUSIONS: iPSCs offer an elegant, patient-focused solution to the investigation of the genetic defects and disease mechanisms underpinning IONs. Furthermore, this group of disorders is uniquely amenable to both the disease modeling capability and the therapeutic potential that iPSCs offer. This fast-moving area will remain at the forefront of both basic and translational ION research in the coming years, with the potential to accelerate the development of effective therapies for patients affected with these blinding diseases.


Subject(s)
Induced Pluripotent Stem Cells , Optic Atrophy, Autosomal Dominant , Optic Atrophy, Hereditary, Leber , Optic Nerve Diseases , Child , Humans , Ions , Optic Atrophy, Autosomal Dominant/diagnosis , Optic Atrophy, Autosomal Dominant/genetics , Optic Atrophy, Autosomal Dominant/therapy , Optic Atrophy, Hereditary, Leber/diagnosis , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/therapy , Optic Nerve Diseases/genetics , Optic Nerve Diseases/therapy , Young Adult
15.
Urology ; 166: 29-38, 2022 08.
Article in English | MEDLINE | ID: mdl-34688770

ABSTRACT

OBJECTIVE: To provide a scoping review of the economic burden of non-cancerous genitourinary conditions (NCGUC). METHODS: A scoping review of the economic costs associated with NCGUC was conducted for literature published between 1990-2020. The articles were screened and relevant articles were selected for review. These articles were abstracted with information pertaining to the costs surrounding NCGUC. A descriptive analysis of the data was conducted. RESULTS: We found 3,298 articles in our scoping review. Of these, we found 39 relevant articles related to pelvic floor dysfunction and pelvic organ prolapse, interstitial cystitis, neurogenic bladder, nocturia, urinary tract infections, urolithiasis, urinary incontinence, benign prostatic hyperplasia, overactive bladder, and erectile dysfunction of which the data was reviewed. CONCLUSION: Although the data in estimating the economic burden is limited, existing evidence demonstrates a significant component of health care spending on NCGUC. Much of the spending is out-of-pocket and indirect costs that are difficult to measure which may increase the magnitude of the costs. There is a need for future research that takes a holistic look at the economic impact of NCGUC.


Subject(s)
Pelvic Organ Prolapse , Urinary Bladder, Neurogenic , Urinary Bladder, Overactive , Urinary Incontinence , Financial Stress , Humans , Male
17.
Curr Biol ; 31(17): R1051-R1053, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34520717

ABSTRACT

A new study finds that mammalian olfaction may be far faster than previously thought. Mice can discriminate between olfactory stimuli that differ in fine temporal structure, at frequencies of up to 40 Hz. But how might mammals achieve high-bandwidth olfaction, and why?


Subject(s)
Odorants , Smell , Animals , Mammals , Mice
18.
Sci Rep ; 11(1): 16396, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34385496

ABSTRACT

The human visual system is able to rapidly and accurately infer the material properties of objects and surfaces in the world. Yet an inverse optics approach-estimating the bi-directional reflectance distribution function of a surface, given its geometry and environment, and relating this to the optical properties of materials-is both intractable and computationally unaffordable. Rather, previous studies have found that the visual system may exploit low-level spatio-chromatic statistics as heuristics for material judgment. Here, we present results from psychophysics and modeling that supports the use of image statistics heuristics in the judgement of metallicity-the quality of appearance that suggests an object is made from metal. Using computer graphics, we generated stimuli that varied along two physical dimensions: the smoothness of a metal object, and the evenness of its transparent coating. This allowed for the exploration of low-level image statistics, whilst ensuring that each stimulus was a naturalistic, physically plausible image. A conjoint-measurement task decoupled the contributions of these dimensions to the perception of metallicity. Low-level image features, as represented in the activations of oriented linear filters at different spatial scales, were found to correlate with the dimensions of the stimulus space, and decision-making models using these activations replicated observer performance in perceiving differences in metal smoothness and coating bumpiness, and judging metallicity. Importantly, the performance of these models did not deteriorate when objects were rotated within their simulated scene, with corresponding changes in image properties. We therefore conclude that low-level image features may provide reliable cues for the robust perception of metallicity.

SELECTION OF CITATIONS
SEARCH DETAIL
...