Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(8): e0219850, 2019.
Article in English | MEDLINE | ID: mdl-31433798

ABSTRACT

We present results of the largest multidisciplinary human mobility investigation to date of skeletal remains from present-day Denmark encompassing the 3rd and 2nd millennia BC. Through a multi-analytical approach based on 88 individuals from 37 different archaeological localities in which we combine strontium isotope and radiocarbon analyses together with anthropological investigations, we explore whether there are significant changes in human mobility patterns during this period. Overall, our data suggest that mobility of people seems to have been continuous throughout the 3rd and 2nd millennia BC. However, our data also indicate a clear shift in mobility patterns from around 1600 BC onwards, with a larger variation in the geographical origin of the migrants, and potentially including more distant regions. This shift occurred during a transition period at the beginning of the Nordic Bronze Age at a time when society flourished, expanded and experienced an unprecedented economic growth, suggesting that these aspects were closely related.


Subject(s)
Human Migration/statistics & numerical data , Anthropology , Archaeology , Denmark , Humans
2.
Nature ; 522(7555): 167-72, 2015 Jun 11.
Article in English | MEDLINE | ID: mdl-26062507

ABSTRACT

The Bronze Age of Eurasia (around 3000-1000 BC) was a period of major cultural changes. However, there is debate about whether these changes resulted from the circulation of ideas or from human migrations, potentially also facilitating the spread of languages and certain phenotypic traits. We investigated this by using new, improved methods to sequence low-coverage genomes from 101 ancient humans from across Eurasia. We show that the Bronze Age was a highly dynamic period involving large-scale population migrations and replacements, responsible for shaping major parts of present-day demographic structure in both Europe and Asia. Our findings are consistent with the hypothesized spread of Indo-European languages during the Early Bronze Age. We also demonstrate that light skin pigmentation in Europeans was already present at high frequency in the Bronze Age, but not lactose tolerance, indicating a more recent onset of positive selection on lactose tolerance than previously thought.


Subject(s)
Asian People/genetics , Cultural Evolution/history , Fossils , Genome, Human/genetics , Genomics , Language/history , White People/genetics , Archaeology/methods , Asia/ethnology , DNA/genetics , DNA/isolation & purification , Europe/ethnology , Gene Frequency/genetics , Genetics, Population , History, Ancient , Human Migration/history , Humans , Lactose Intolerance/genetics , Polymorphism, Single Nucleotide/genetics , Skin Pigmentation/genetics
3.
PLoS One ; 9(7): e101603, 2014.
Article in English | MEDLINE | ID: mdl-25010496

ABSTRACT

Dental enamel is currently of high informative value in studies concerning childhood origin and human mobility because the strontium isotope ratio in human dental enamel is indicative of geographical origin. However, many prehistoric burials involve cremation and although strontium retains its original biological isotopic composition, even when exposed to very high temperatures, intact dental enamel is rarely preserved in cremated or burned human remains. When preserved, fragments of dental enamel may be difficult to recognize and identify. Finding a substitute material for strontium isotope analysis of burned human remains, reflecting childhood values, is hence of high priority. This is the first study comparing strontium isotope ratios from cremated and non-cremated petrous portions with enamel as indicator for childhood origin. We show how strontium isotope ratios in the otic capsule of the petrous portion of the inner ear are highly correlated with strontium isotope ratios in dental enamel from the same individual, whether inhumed or cremated. This implies that strontium isotope ratios in the petrous bone, which practically always survives cremation, are indicative of childhood origin for human skeletal remains. Hence, the petrous bone is ideal as a substitute material for strontium isotope analysis of burned human remains.


Subject(s)
Cremation , Human Migration , Petrous Bone/chemistry , Burial , Child , Dental Enamel/chemistry , Humans , Strontium Isotopes/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...