Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 54
1.
Curr Radiopharm ; 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38685786

BACKGROUND: Radiotherapy plays a vital role in the management of high-grade gliomas. However, the radio resistance of glioma cells limits the effect of radiation and drives recurrence inside the irradiated tumor volume leading to poor outcomes for patients. METHODS: High-grade glioma cell radioresistance significantly contributes to radiotherapy failure, highlighting the importance of identifying predictive biomarkers for radioresistance. An increasing body of evidence complies with the Yes Associated Protein 1 (Yap-1) and heat shock protein 90 (Hsp90) as biomarkers for radioresistance in glioma cells. A number of studies suggest the potential of radioresistance-associated factors as biomarkers and/ or novel therapeutic targets in glioma cells. Thus, it is essential for glioblastoma patients to identify robust druggable targets involved in radioresistance, optimizing irradiation protocol, and understanding their underlying molecular mechanisms. RESULTS: Therefore, in the present study, we hypothesized that hypofractionated Gamma Knife radiation therapy (HF-GKRT) could target Yap-1 and Hsp90 and downregulate the mechanism of radioresistance in high-grade glioma cells. CONCLUSION: For this purpose, expression levels of radioresistance markers Yap-1 and Hsp90 were evaluated after treatment with HF-GKRT, and this was compared with single fraction Gamma Knife radiation therapy (SF-GKRT) in U87MG primary human glioblastoma cell line model. This would help design a novel radiation therapy regimen for glioblastoma patients by reducing the risk of radioresistance.

2.
Neurochirurgie ; 70(2): 101532, 2024 Mar.
Article En | MEDLINE | ID: mdl-38215936

BACKGROUND: The role of Gamma Knife radiosurgery (GKRS) in recurrent glioblastoma remains unclear. The purpose of this study is to evaluate the effects of GKRS in a group of patients with recurrent glioblastoma, focusing on survival and safety. METHODS: Patients undergoing GKRS for recurrent glioblastoma between September 2014 and April 2019 were included in this study. Relevant clinical and radiosurgical data, including GKRS-related complications, were recorded and analyzed. Overall survival (OS), local progression free survival (LPFS) and prognostic factors for outcome were thoroughly evaluated. RESULTS: Fifty-three patients were analyzed (24 female, 29 male). The median age was 50 years (range, 19-78 years). The median GKRS treatment volume was 35.01 cm3 (range, 2.38-115.57 cm3). Twenty patients (38%) were treated with single fraction GKRS, while 33 (62%) were treated with GKRS-based hypofractionated stereotactic radiotherapy (HSRT). The median prescription dose for single fraction GKRS, 3-fractions HSRT and 5-fractions HSRT were 16 Gy (range, 10-20 Gy), 27 Gy (range, 18-33 Gy) and 25 Gy (range, 25-30 Gy), respectively. The median LPFS and OS times were 8.1 months and 11.4 months after GKRS, respectively. HSRT and Bevacizumab were associated with improved LPFS, while HSRT alone was associated with longer OS. CONCLUSION: Our findings suggested that HRST would likely improve LPFS and OS in definite settings; the addition of Bevacizumab to GKRS was associated with increased rates of local control. No major complications were reported. Further prospective studies are warranted to confirm our findings.


Glioblastoma , Radiosurgery , Humans , Male , Female , Middle Aged , Glioblastoma/radiotherapy , Glioblastoma/surgery , Bevacizumab , Treatment Outcome , Progression-Free Survival , Retrospective Studies , Follow-Up Studies
3.
Diagnostics (Basel) ; 13(6)2023 Mar 07.
Article En | MEDLINE | ID: mdl-36980325

BACKGROUND: Glioblastoma poses an inevitable threat to patients despite aggressive therapy regimes. It displays a great level of molecular heterogeneity and numerous substitutions in several genes have been documented. Next-generation sequencing techniques have identified various molecular signatures that have led to a better understanding of the molecular pathogenesis of glioblastoma. In this limited study, we sought to identify genetic variants in a small number of rare patients with aggressive glioblastoma. METHODS: Five tumor tissue samples were isolated from four patients with rapidly growing glioblastoma. Genomic DNA was isolated and whole exome sequencing was used to study protein-coding regions. Generated FASTQ files were analyzed and variants were called for each sample. Variants were prioritized with different approaches and functional annotation was applied for the detrimental variants. RESULTS: A total of 49,780 somatic variants were identified in the five glioblastoma samples studied, with the majority as missense substitutions. The top ten genes with the highest number of substitutions were MUC3A, MUC4, MUC6, OR4C5, PDE4DIP, AHNAK2, OR4C3, ZNF806, TTN, and RP1L1. Notably, variant prioritization after annotation indicated that the MTCH2 (Chr11: 47647265 A>G) gene sequence change was putative deleterious in all of the aggressive tumor samples. CONCLUSION: The MTCH2 (Chr11: 47647265 A>G) gene substitution was identified as putative deleterious in highly aggressive glioblastomas, which merits further investigation. Moreover, a high tumor mutation burden was observed, with a signature of the highest substitutions in MUC3A, MUC4, MUC6, OR4C5, PDE4DIP, AHNAK2, OR4C3, ZNF806, TTN, and RP1L1 genes. The findings provide critical, initial data for the further rational design of genetic screening and diagnostic approaches against aggressive glioblastoma.

4.
Curr Radiopharm ; 16(3): 204-213, 2023 Jun 05.
Article En | MEDLINE | ID: mdl-36733208

BACKGROUND: The relation between micro-RNA (miRNA) modulation and immune cell activity in high-dose radiation settings is not clearly understood. OBJECTIVE: To investigate the role of stereotactic radiosurgery (SRS) in (i) the regulation of tumorsuppressor and oncogenic miRNAs as well as (ii) its effect on specific immune cell subsets in patients with metastatic brain tumors (MBT). METHODS: 9 MBT patients who underwent gamma knife-based stereotactic radiosurgery (GKRS) and 8 healthy individuals were included. Serum samples were isolated at three-time intervals (before GKRS, 1 hour, and 1-month post-GKRS). Expressions of tumor-suppressor (miR-124) and oncogenic (miR-21, miR-181a, miR-23a, miR-125b, and miR-17) miRNAs were quantified by qPCR. The lymphocytic frequency (CD3+, CD4+, CD8+, CD56+, CD19+, and CD16+) was investigated by means of flow cytometry. RESULTS: The median age was 64 years (range: 50-73 years). The median prescription dose was 20Gy (range: 16Gy-24Gy), all delivered in a single fraction. The median overall survival and progression- free survival were 7.8 months (range: 1.7-14.9 months) and 6.7 months (range: 1.1-11.5 months), respectively. Compared to healthy controls, baseline levels of oncogenic miRNAs were significantly higher, while tumor-suppressing miRNA levels remained markedly lower in MBT patients prior to GKRS. Following GKRS, there was a reduction in the expression of miR-21, miR-17, and miR-181a; simultaneously, increased expression increased of miR-124 was observed. No significant difference in immune cell subsets was noted post GKRSIn a similar fashion. We noted no correlation between patient characteristics, radiosurgery data, miRNA expression, and immune cell frequency. CONCLUSION: For this specific population with MBT disease, our data suggest that stereotactic radiosurgery may modulate the expression of circulating tumor-suppressor and oncogenic miRNAs, ultimately enhancing key anti-tumoral responses. Further evaluation with larger cohorts is warranted.


Brain Neoplasms , MicroRNAs , Radiosurgery , Humans , Middle Aged , Treatment Outcome , Follow-Up Studies , Radiopharmaceuticals , Brain Neoplasms/genetics , MicroRNAs/genetics , Retrospective Studies
5.
Br J Neurosurg ; 37(4): 675-676, 2023 Aug.
Article En | MEDLINE | ID: mdl-30681002

To identify histological types of Meningiomas', immunohistochemically markers are used. We present Phosphohistone-H3 (PHH-3) staining for the first time. The patient's case notes were retrospectively reviewed. PHH-3 staining revealed sparse mitotically active cells. PHH-3 staining can be used to grade sclerosing meningioma.


Meningeal Neoplasms , Meningioma , Humans , Histones , Immunohistochemistry , Meningeal Neoplasms/diagnostic imaging , Meningeal Neoplasms/surgery , Meningeal Neoplasms/pathology , Meningioma/diagnostic imaging , Meningioma/surgery , Meningioma/pathology , Mitotic Index , Retrospective Studies
6.
Front Mol Neurosci ; 15: 1029657, 2022.
Article En | MEDLINE | ID: mdl-36299858

Glioma stem cells (GSCs) drive the resistance mechanism in glioma tumors and mediate the suppression of innate and adaptive immune responses. Here we investigate the expression of mesenchymal-epithelial transition factor (c-Met) and Fas receptor in GSCs and their role in potentiating the tumor-mediated immune suppression through modulation of tumor infiltrating lymphocyte (TIL) population. Tumor tissues were collected from 4 patients who underwent surgery for glioblastoma. GSCs were cultured as neurospheres and evaluated for the co-expression of CD133, c-Met and FasL through flow cytometry. TILs were isolated and evaluated for the lymphocyte subset frequencies including CD3 +, CD4 +, CD8 +, regulatory T cells (FOXP3 + CD25) and microglia (CD11b + CD45) using flow cytometry. Our findings revealed that a significant population of GSCs in all four samples expressed c-Met (89-99%) and FasL (73-97%). A significantly low microglia population was found in local immune cells ranging from 3 to 5%. We did not find a statistically significant correlation between expressions of c-Met + GSC and FasL + GSC with local and systemic immune cells. This may be regarded to the small sample size. The percent c-Met + and FasL + GSC population appeared to be related to percent cytotoxic T cells, regulatory T cells and microglia populations in glioblastoma patients. Further investigation is warranted in a larger sample size.

7.
Semin Cancer Biol ; 86(Pt 2): 172-186, 2022 11.
Article En | MEDLINE | ID: mdl-35760272

Glioblastoma is the most aggressive form of brain tumor, accounting for the highest mortality and morbidity rates. Current treatment for patients with glioblastoma includes maximal safe tumor resection followed by radiation therapy with concomitant temozolomide (TMZ) chemotherapy. The addition of TMZ to the conformal radiation therapy has improved the median survival time only from 12 months to 16 months in patients with glioblastoma. Despite these aggressive treatment strategies, patients' prognosis remains poor. This therapeutic failure is primarily attributed to the blood-brain barrier (BBB) that restricts the transport of TMZ from reaching the tumor site. In recent years, nanomedicine has gained considerable attention among researchers and shown promising developments in clinical applications, including the diagnosis, prognosis, and treatment of glioblastoma tumors. This review sheds light on the morphological and physiological complexity of the BBB. It also explains the development of nanomedicine strategies to enhance the permeability of drug molecules across the BBB.


Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/therapy , Glioblastoma/drug therapy , Nanomedicine , Temozolomide/therapeutic use , Brain Neoplasms/diagnosis , Brain Neoplasms/drug therapy , Blood-Brain Barrier/pathology
8.
Medeni Med J ; 36(1): 7-13, 2021.
Article En | MEDLINE | ID: mdl-33828884

OBJECTIVE: To investigate changes in DTI (Diffusion Tensor Imaging) parameters in brainstem subcortical auditory pathways after Gamma Knife Radiosurgery (GKR) in patients with intracanalicular vestibular schwannoma (ICVS) and to analyze the relationship between tumor volume and ADC (apparent diffusion coefficient) and FA (fractional anisotropy) values. METHOD: Seventeen patients with ICVS were evaluated before and after GKR. ADC and FA values of the lateral lemniscus (LL) and inferior colliculus (IC) and tumor volume were calculated. Patients who responded to GKR were classified as Group 1 and those who did not respond adequately as Group 2. The relationship between ADC and FA values and changes in tumor volume were analyzed. RESULTS: Tumor volume significantly decreased after GKR. ADC values obtained from the tumor increased after GKR (p:0.002). There was no significant difference in LL and IC before and after GKR in terms of FA and ADC values (n:17). There was a positive correlation between response to treatment and contralateral LL ADC values after GKR (p=0.005, r:0.652). There was a negative correlation between contralateral IC FA values after GKR and response to treatment (p=0.017, r: -0.568). There was a significant difference between Groups 1 and 2 in regards to contralateral LL ADC (p=0.03) and IC FA values (p=0.017). CONCLUSION: Since the cochlear nerve and subcortical auditory pathways have low regeneration potential after nerve damage, ADC and FA changes in LL and IC may be explained with the presence of intracanalicular tumors prior to GKR. Since GKR does not cause additional damage to the subcortical auditory pathways at the brainstem level, we think that GKR is a noninvasive treatment method that can be used safely in patients with ICVS.

9.
Int J Mol Sci ; 22(3)2021 Jan 28.
Article En | MEDLINE | ID: mdl-33525678

Autophagy is a process essential for cellular energy consumption, survival, and defense mechanisms. The role of autophagy in several types of human cancers has been explicitly explained; however, the underlying molecular mechanism of autophagy in glioblastoma remains ambiguous. Autophagy is thought to be a "double-edged sword", and its effect on tumorigenesis varies with cell type. On the other hand, autophagy may play a significant role in the resistance mechanisms against various therapies. Therefore, it is of the utmost importance to gain insight into the molecular mechanisms deriving the autophagy-mediated therapeutic resistance and designing improved treatment strategies for glioblastoma. In this review, we discuss autophagy mechanisms, specifically its pro-survival and growth-suppressing mechanisms in glioblastomas. In addition, we try to shed some light on the autophagy-mediated activation of the cellular mechanisms supporting radioresistance and chemoresistance in glioblastoma. This review also highlights autophagy's involvement in glioma stem cell behavior, underlining its role as a potential molecular target for therapeutic interventions.


Autophagy-Related Proteins/metabolism , Brain Neoplasms/metabolism , Drug Resistance, Neoplasm , Glioblastoma/metabolism , Radiation Tolerance , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Autophagy , Brain Neoplasms/drug therapy , Brain Neoplasms/radiotherapy , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/radiation effects , Glioblastoma/drug therapy , Glioblastoma/radiotherapy , Humans , Signal Transduction
10.
Curr Neuropharmacol ; 19(10): 1701-1715, 2021.
Article En | MEDLINE | ID: mdl-33441071

BACKGROUND: Glioma is the primary cancer of the central nervous system in adults. Among gliomas, glioblastoma is the most deadly and aggressive form, with an average life span of 1 to 2 years. Despite implementing the rigorous standard care involving maximal surgical removal followed by concomitant radiation and chemotherapy, the patient prognosis remains poor. Due to the infiltrative nature of glioblastoma, chemo- and radio-resistance behavior of these tumors and lack of potent chemotherapeutic drugs, treatment of glioblastoma is still a big challenge. OBJECTIVE: The goal of the present review is to shed some light on the present state of novel strategies, including molecular therapies, immunotherapies, nanotechnology and combination therapies for patients with glioblastoma. METHODS: Peer-reviewed literature was retrieved via Embase, Ovid, PubMed and Google Scholar till the year 2020. CONCLUSION: Insufficient effect of chemotherapies for glioblastoma is more likely because of different drug resistance mechanisms and intrinsically complex pathological characteristics. Therefore, more advancement in various therapeutic approaches such as antitumor immune response, targeting growth regulatory and drug resistance pathways, enhancing drug delivery and drug carrier systems are required in order to establish an effective treatment approach for patients with glioblastoma.


Brain Neoplasms , Glioblastoma , Glioma , Adult , Brain Neoplasms/drug therapy , Combined Modality Therapy , Glioblastoma/drug therapy , Humans , Immunotherapy
11.
Curr Med Imaging ; 17(5): 602-607, 2021.
Article En | MEDLINE | ID: mdl-33504315

BACKGROUND: The effectiveness of Diffusion Tensor Imaging (DTI) in demonstrating functional changes in the tumor in determining the response to treatment after radiosurgery in patients with vestibular schwannoma (VS) is not clear yet. OBJECTIVE: The study aimed to determine the change in total tumor volume (TTV) in terms of radiological response in patients who had VS and were treated with radiosurgery and investigated the relationship between the TTV, follow-up times and DTI parameters. METHODS: Thirty-one patients were assessed using DTI and MRI. TTV, apparent diffusion coefficient (ADC), and fractional anisotropy (FA) were calculated. Patients were divided into three groups: those who responded to the treatment (group 1) (n=11), those who did not (group 0) (n=9) and those who remained stable (group 2) (n=11). RESULTS: The mean duration of follow-up was 28.81±14 months. ADC values increased in patients with VS after radiosurgery (p=0.004). There was no statistical difference in the FA values. A significant reduction in TTV after radiosurgery was detected in group 1 (p=0.003). ADC values increased significantly after radiosurgery in group 2 (p=0.04). Although there were no significant differences, ADC values after radiosurgery increased in group 1 and group 0. CONCLUSIONS: ADC values continuously increase due to radiation damage in the period before the tumor volume shrinks after radiosurgery. We think that it is not appropriate to diagnose inadequate treatment or progression only when TTV is evaluated in terms of response to treatment in the early period after radiosurgery.


Neuroma, Acoustic , Radiosurgery , Diffusion Tensor Imaging , Humans , Magnetic Resonance Imaging , Neuroma, Acoustic/diagnostic imaging , Tumor Burden
12.
Toxicol Rep ; 8: 162-170, 2021.
Article En | MEDLINE | ID: mdl-33489775

Glioblastoma, as an invasive tumor, is one of the most common primary malignant brain tumors. Despite maximum aggressive treatment, patients with glioblastoma have a dismal prognosis. Thymoquinone (TQ) has been found to show anti-cancer effects on different types of cancer. There are a few in vitro studies on the effect of TQ on glial tumors. However, the molecular mechanism of TQ's anti-cancer effect has not been fully elucidated. In the present study, we aimed to investigate the genotoxic, apoptotic, and cytotoxic effects of TQ on C6 rat glioma cells. C6 glioma cells were analyzed after 24 h of exposure to different concentrations of TQ by the ATP cell viability assay for cytotoxicity, comet assay for genotoxicity, 2',7'dichlorodihydrofluorescein diacetate (H2DCF-DA) for intracellular reactive oxygen species (iROS) generation, 3.3'dihexyloxacarbocyanine iodide (DiOC6(3)) for mitochondrial membrane potential, GSH/GSSG-Glo Assay for glutathione level and Fura-2AM for intracellular calcium levels. Apoptosis induction was studied by acridine orange/ethidium bromide double staining, flow cytometry, and western blotting analyses. Caspase-3, Caspase-9, Bax, Bcl-2, and pSTAT3 protein levels were determined by the western blotting method. Cytotoxicity was enhanced by TQ in C6 glioma cells in a concentration-dependent manner. TQ also induced DNA damage, apoptosis, and increased iROS. Also, MMP and GSH levels were decreased by TQ. It inhibited pSTAT3, resulting in apoptosis induction through the regulation of anti-apoptotic and pro-apoptotic proteins. Our results suggest that TQ would be an effective treatment in glioma. Further studies should support these findings.

14.
Neurol Neurochir Pol ; 54(6): 576-584, 2020.
Article En | MEDLINE | ID: mdl-33252137

AIM OF THE STUDY: Among subarachnoid haemorrhage (SAH) patients, delayed cerebral injury (DCI) and infarction are the most important causes of death and major disability. Cerebral vasospasm (cVS) and DCI remain the major cause of death and disability. Thymoquinone (TQ) is the substance most responsible for the biological activity of nigella sativa (NS) and is useful in the treatment of ischaemic and neurodegenerative diseases, oxidative stress, inflammatory events, cardiovascular and neurological diseases. We conducted an experimental study aimed to investigate the preventive and corrective effects of TQ. MATERIALS AND METHODS: 24 Sprague-Dawley rats were randomly divided into three groups. The first was the control group which was a sham surgery group. The second group was the SAH group where the double haemorrage SAH protocol was used to induce vasospasm. The third group was the SAH+TQ group, where cVS was induced by the SAH protocol and the animals received oral 2 cc thymoquinone solution for seven days at a dose of 10 mg/kg, after the induction of SAH. The rats were euthanised seven days after the first procedure. The degree of cerebral vasospasm was evaluated by measuring the basilar artery luminal area and arterial wall thickness. Apoptosis was measured by the western blot method at brainstem neural tissue. Oxidative stress was measured by the Erel Method. Endothelin-1 was measured with ELISA analysis at blood. Statistical analysis was performed. RESULTS: Endothelin-1 values were found to be statistically significantly lower in the control and SAH+TQ groups compared to the SAH group (P < 0.001). Mean lumen area values were significantly higher in the control and SAH+TQ groups than in the SAH group (P < 0.001). In the control and SAH+TQ groups, wall thickness values decreased significantly compared to the SAH group (P < 0.001). OSI values were significantly lower in the control and SAH+TQ groups than in the SAH group (P < 0.001). Apoptosis was significantly lower in the control and SAH+TQ groups than in the SAH group (P < 0.001). CONCLUSION: Our results show that post-SAH TQ inhibits/improves DCI and cVS with positive effects on oxidative stress, apoptosis, ET-1, lumen area, and vessel wall thickness, probably due to its anti-ischaemic, antispasmodic, antioxidant, anti-inflammatory, anti-apoptotic and neuroprotective effects.


Subarachnoid Hemorrhage , Vasospasm, Intracranial , Animals , Basilar Artery , Benzoquinones/therapeutic use , Disease Models, Animal , Humans , Rats , Rats, Sprague-Dawley , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/drug therapy , Vasospasm, Intracranial/drug therapy , Vasospasm, Intracranial/etiology , Vasospasm, Intracranial/prevention & control
15.
Surg Neurol Int ; 11: 260, 2020.
Article En | MEDLINE | ID: mdl-33024598

Up until, June 13, 2020, >7,500,000 cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and >400,000 deaths, across 216 countries, have been confirmed by the World Health Organization (WHO). With reference to the two previous beta-CoV outbreaks (SARS-CoV and middle east respiratory syndrome [MERS]), this paper examines the pathophysiological and clinical similarities seen across all three CoVs, with a special interest in the neuroinvasive capability and subsequent consequences for patients with primary or metastatic brain tumors. More widely, we examine the lessons learned from the management of such large-scale crises in the past, specifically looking at the South Korean experience of MERS and the subsequent shift in disaster management response to SARS-CoV-2, based on prior knowledge gained. We assess the strategies with which infection prevention and control can, or perhaps should, be implemented to best contain the spread of such viruses in the event of a further likely outbreak in the future.

16.
Med Hypotheses ; 144: 110009, 2020 Nov.
Article En | MEDLINE | ID: mdl-32758869

The outbreak of Novel Coronavirus 2019 (COVID-19) represents a global threat to the public healthcare. The viral spike (S) glycoprotein is the key molecule for viral entry through interaction with angiotensin converting enzyme 2 (ACE2) receptor molecules present on the cell membranes. Moreover, it has been established that COVID-19 interacts and infects brain cells in humans via ACE2. Therefore in the light of these known facts we hypothesized that viral S protein molecule may bind to the other overexpressed receptor molecules in glioma cells and may play some role in glioma tumorogenesis. Thus we leverage docking analysis (HEX and Z-DOCK) between viral S protein and epidermal growth factor receptors (EGFR), vascular endothelial growth factor receptors (VEGFR) and hepatocyte growth factor receptors (HGFR/c-MET) to investigate the oncogenic potential of COVID-19. Our findings suggested higher affinity of Viral S protein towards EGFR and VEGFR. Although, the data presented is preliminary and need to be validated further via molecular dynamics studies, however it paves platform to instigate further investigations on this aspect considering the aftermath of COVID-19 pandemic in oncogenic perspective.


Angiotensin-Converting Enzyme 2/metabolism , Brain Neoplasms/etiology , COVID-19/complications , Glioma/etiology , Neoplasm Proteins/metabolism , Proto-Oncogene Proteins c-met/metabolism , Receptors, Vascular Endothelial Growth Factor/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Brain/virology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Transformation, Neoplastic , ErbB Receptors/chemistry , ErbB Receptors/metabolism , Glioma/genetics , Glioma/metabolism , Humans , Models, Molecular , Molecular Docking Simulation , Neoplasm Proteins/genetics , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Protein Binding , Protein Conformation , Proto-Oncogene Proteins c-met/chemistry , Receptors, Vascular Endothelial Growth Factor/chemistry , SARS-CoV-2/metabolism , Up-Regulation
17.
Neurol Res ; 42(1): 68-75, 2020 Jan.
Article En | MEDLINE | ID: mdl-31900072

Objectives: Cardiac glycosides are used as potential anti-cancer agents due to their effects on the inhibition of proliferation and induction of apoptosis and/or autophagy in cancer cells. Herein, we aimed to study the potential signaling pathways taken role in differential cell-death properties of AnvirzelTM which is consisted of two toxic cardiac glycosides (oleandrin and oleandrigenin), in U87 human glioblastoma cells.Methods: The anti-proliferative and anti-migratory effects of AnvirzelTM were assessed in U87 cells by WST-1 assay and wound healing assay, respectively. After treatment of AnvirzelTMwith doses of 10, 25, 50, 100 and 250 µg/ml, expression levels of proteins related to cell death were investigated by Western blot.Results: Anvirzel™ markedly inhibited the growth of U87 cells in a time- and dose-dependent manner following 24 h and 48 h treatments (p < 0.05). In addition, it was found that Anvirzel™ inhibited GSK-3, NOS and HIF1-α expressions whereas activated ERK in U87 cells compared to vehicle (p < 0.05).Discussion: The results suggested that AnvirzelTM regulated cell death distinctly from apoptosis in human glioblastoma cells. Further studies are required for validation of mechanistic insights about the potential signaling pathways taken role in differential cell death properties of AnvirzelTM.


Cardenolides/pharmacology , Cell Movement/drug effects , Glycogen Synthase Kinase 3/antagonists & inhibitors , Glycogen Synthase Kinase 3/metabolism , Cardiac Glycosides/pharmacology , Cell Death/drug effects , Cell Death/physiology , Cell Line, Tumor , Cell Movement/physiology , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Humans
18.
Br J Neurosurg ; 34(6): 604-610, 2020 Dec.
Article En | MEDLINE | ID: mdl-31317782

Background: There is lack of data on the effect of stereotactic radiosurgery in modulation of the immune system for cancer patients with metastatic brain tumours. Therefore, we investigated the change in levels of immunoregulatory molecules after Gamma Knife radiosurgery (GKR) and whole brain radiation therapy (WBRT) in patients with brain metastases.Methods: Peripheral blood samples were collected from 15 patients who received GKR, nine patients who received WBRT for brain metastases and 10 healthy controls. Samples were obtained at three time points such as before, 1h after and 1 week after the index procedure for patients treated with GKR or WBRT. All patients' demographic data and radiosurgical parameters were retrospectively reviewed. We analyzed the change in the levels of T-lymphocyte-associated antigen 4 (CTLA-4) and programmed cell death ligand-1 (PD-L1), and cytokines such as IL-2, IL-10, IFN-γ, TNF-α after GKR and WBRT using Enzyme-linked immunosorbent assays (ELISA).Results: Baseline level of IFN-γ was found to be lower and that of PD-L1 was higher in the GKR group compared to WBRT group and healthy controls (p < 0.05 and p < 0.01, respectively). Levels of IFN-γ and IL-2 were increased (p < 0.01 and p < 0.01, respectively), while CTLA-4 and PD-L1 were decreased (p = 0.05 and p = 0.01, respectively) after GKR compared to pre-GKR levels, while there was no change after WBRT.Conclusion: GKR regulates immunoregulatory molecules towards enhancing the immune system, while WBRT did not exert any effect. These findings suggested that treatment of metastatic brain lesion with GKR might stimulate a systemic immune response against the tumour.


Brain Neoplasms , Radiosurgery , Brain , Brain Neoplasms/radiotherapy , Brain Neoplasms/surgery , Humans , Immunity , Retrospective Studies
19.
Neurosurg Rev ; 43(2): 483-495, 2020 Apr.
Article En | MEDLINE | ID: mdl-30058049

Brain metastasis is a serious complication in patients with systemic cancer. The main goal of the treatment in patients with brain metastasis is to control the disease in the brain, to prevent death from neurological disease and provide a satisfactory quality of life. Management of a patient with brain metastasis is important and sometimes demanding, and several factors such as tumor histology, status of primary disease, number of brain lesions, size of lesions, and performance status may influence the decision making process. We reviewed the neurosurgical treatment modalities in patients with metastatic brain tumor and suggested a treatment paradigm for different clinical conditions. The PubMed database was searched using combinations of search terms and synonyms for "management of brain metastasis," "stereotactic radiosurgery for brain metastasis," and "surgery for brain metastasis" between January 1, 1990, and January 1, 2018. This review would guide physicians to solve challenging problems in the treatment of patients with brain metastasis. In summary, local aggressive treatments such as surgical resection and stereotactic radiosurgery are reasonable in patients with limited intracranial disease, controlled primary disease, and high performance status. Besides, WBRT is still the standard treatment in patients with low performance score and leptomeningeal dissemination of cancer.


Brain Neoplasms/secondary , Brain Neoplasms/surgery , Neurosurgical Procedures/methods , Humans , Neoplasm Metastasis , Radiosurgery
20.
Brain Res Bull ; 154: 68-80, 2020 01.
Article En | MEDLINE | ID: mdl-31715313

Traumatic brain injury (TBI) is one of the important reason of morbidity and mortality. While the primary injury due to mechanical impact is unavoidable, the secondary injury which is formed as a result of primary injury and thought to occur due to neuroinflammation in the forefront can be prevented and by this way mortality and morbidity can be reduced. High mobility group box-1 (HMGB1) is a protein that triggers the neuroinflammatory process by being released from the nucleus of necrotic tissues after primary injury. The aim of this study is to investigate the effects of HMGB1 on its receptors TLR4 and RAGE, cerebral edema, blood-brain barrier, oxidative stress and apoptosis causing secondary damage in an experimental traumatic brain injury model. Weighing between 280-320 g, 10 to 12 weeks-old, a total of 30 adult male Sprague-Dawley rats were used for the experiments. The rats were randomly assigned to 3 groups: 1) Control, 2) TBI and 3) TBI + ethyl pyruvate group (n = 10 per group). Right parietal cortical contusion was made by using a weight-dropping TBI method. Brain samples were harvested from pericontusional area at 24 h after TBI. HMGB1, TLR4, RAGE, occludin, claudin-5, ZO-1 levels are investigated by western blot analyses and immunohistochemistry examinations. HMGB-1, TLR4 and RAGE expressions increased after TBI. Major tight junction proteins in the blood-brain barrier: occludin, claudin-5 and ZO-1 expressions decreased after TBI. Brain edema increased after TBI. Also, proapoptotic bax and active caspase 3 expressions increased, antiapoptotic bcl-2 levels decreased after TBI. Total oxidant status and oxidative stress increased, total antioxidant status decreased after TBI. HMGB-1 protein plays a key role in the pathophysiology of traumatic brain injury.


Brain Injuries, Traumatic/metabolism , HMGB1 Protein/metabolism , Animals , Apoptosis/physiology , Blood-Brain Barrier/metabolism , Brain/metabolism , Brain Edema/etiology , Brain Edema/metabolism , Brain Injuries/complications , Brain Injuries, Traumatic/physiopathology , Claudin-5/metabolism , Disease Models, Animal , HMG-Box Domains/physiology , HMGB1 Protein/physiology , High Mobility Group Proteins/metabolism , Male , Occludin/metabolism , Oxidative Stress/physiology , Pyruvates/pharmacology , Rats , Rats, Sprague-Dawley , Receptor for Advanced Glycation End Products/metabolism , Toll-Like Receptor 4/metabolism , Zonula Occludens-1 Protein/metabolism
...