Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 29
1.
Amyloid ; 30(4): 424-433, 2023 Dec.
Article En | MEDLINE | ID: mdl-37431668

BACKGROUND: Systemic AA amyloidosis is a world-wide occurring protein misfolding disease in humans and animals that arises from the formation of amyloid fibrils from serum amyloid A (SAA) protein and their deposition in multiple organs. OBJECTIVE: To identify new agents that prevent fibril formation from SAA protein and to determine their mode of action. MATERIALS AND METHODS: We used a cell model for the formation of amyloid deposits from SAA protein to screen a library of peptides and small proteins, which were purified from human hemofiltrate. To clarify the inhibitory mechanism the obtained inhibitors were characterised in cell-free fibril formation assays and other biochemical methods. RESULTS: We identified lysozyme as an inhibitor of SAA fibril formation. Lysozyme antagonised fibril formation both in the cell model as well as in cell-free fibril formation assays. The protein binds SAA with a dissociation constant of 16.5 ± 0.6 µM, while the binding site on SAA is formed by segments of positively charged amino acids. CONCLUSION: Our data imply that lysozyme acts in a chaperone-like fashion and prevents the aggregation of SAA protein through direct, physical interactions.


Amyloidosis , Immunoglobulin Light-chain Amyloidosis , Animals , Humans , Serum Amyloid A Protein/metabolism , Muramidase , Amyloidosis/metabolism , Amyloid/metabolism
2.
Cell Mol Life Sci ; 80(6): 151, 2023 May 17.
Article En | MEDLINE | ID: mdl-37198527

Antimicrobial peptides (AMPs) are major components of the innate immune defense. Accumulating evidence suggests that the antibacterial activity of many AMPs is dependent on the formation of amyloid-like fibrils. To identify novel fibril forming AMPs, we generated a spleen-derived peptide library and screened it for the presence of amyloidogenic peptides. This approach led to the identification of a C-terminal 32-mer fragment of alpha-hemoglobin, termed HBA(111-142). The non-fibrillar peptide has membranolytic activity against various bacterial species, while the HBA(111-142) fibrils aggregated bacteria to promote their phagocytotic clearance. Further, HBA(111-142) fibrils selectively inhibited measles and herpes viruses (HSV-1, HSV-2, HCMV), but not SARS-CoV-2, ZIKV and IAV. HBA(111-142) is released from its precursor by ubiquitous aspartic proteases under acidic conditions characteristic at sites of infection and inflammation. Thus, HBA(111-142) is an amyloidogenic AMP that may specifically be generated from a highly abundant precursor during bacterial or viral infection and may play an important role in innate antimicrobial immune responses.


COVID-19 , Zika Virus Infection , Zika Virus , Humans , Peptides , Amyloid/chemistry , Anti-Bacterial Agents/pharmacology , Hemoglobins
3.
Amyloid ; 30(1): 27-37, 2023 Mar.
Article En | MEDLINE | ID: mdl-35792725

BACKGROUND: Systemic AL amyloidosis arises from the misfolding of patient-specific immunoglobulin light chains (LCs). Potential drivers of LC amyloid formation are mutational changes and post-translational modifications (PTMs). However, little information is available on the exact primary structure of the AL proteins and their precursor LCs. OBJECTIVE: We analyse the exact primary structure of AL proteins extracted from 10 λ AL amyloidosis patients and their corresponding precursor LCs. MATERIALS AND METHODS: By cDNA sequencing of the precursor LC genes in combination with mass spectrometry of the AL proteins, the exact primary structure and PTMs were determined. This information was used to analyse their biochemical properties. RESULTS: All AL proteins comprise the VL and a small part of the CL with a common C-terminal truncation region. While all AL proteins retain the conserved native disulphide bond of the VL, we found no evidence for presence of other common PTMs. The analysis of the biochemical properties revealed that the isoelectric point of the VL is significantly increased due to introduced mutations. CONCLUSION: Our data imply that mutational changes influence the surface charge properties of the VL and that common proteolytic processes are involved in the generation of the cleavage sites of AL proteins.


Amyloidosis , Immunoglobulin Light-chain Amyloidosis , Humans , Immunoglobulin Light-chain Amyloidosis/genetics , Amyloidosis/genetics , Amyloidosis/metabolism , Immunoglobulin Light Chains/metabolism , Amyloid/genetics , Amyloid/metabolism , Mass Spectrometry , Abdominal Fat/metabolism
4.
Nat Commun ; 13(1): 7261, 2022 11 25.
Article En | MEDLINE | ID: mdl-36433936

Systemic AA amyloidosis is a debilitating protein misfolding disease in humans and animals. In humans, it occurs in two variants that are called 'vascular' and 'glomerular', depending on the main amyloid deposition site in the kidneys. Using cryo electron microscopy, we here show the amyloid fibril structure underlying the vascular disease variant. Fibrils purified from the tissue of such patients are mainly left-hand twisted and contain two non-equal stacks of fibril proteins. They contrast in these properties to the fibrils from the glomerular disease variant which are right-hand twisted and consist of two structurally equal stacks of fibril proteins. Our data demonstrate that the different disease variants in systemic AA amyloidosis are associated with different fibril morphologies.


Amyloidosis , Immunoglobulin Light-chain Amyloidosis , Kidney Diseases , Animals , Humans , Amyloid/metabolism , Amyloidosis/metabolism , Immunoglobulin Light-chain Amyloidosis/metabolism , Cryoelectron Microscopy
5.
J Struct Biol X ; 6: 100069, 2022.
Article En | MEDLINE | ID: mdl-35924280

AA amyloidosis is one of the most prevalent forms of systemic amyloidosis and affects both humans and other vertebrates. In this study, we compare MAS solid-state NMR data with a recent cryo-EM study of fibrils involving full-length murine SAA1.1. We address the question whether the specific requirements for the reconstitution of an amyloid fibril structure by cryo-EM can potentially yield a bias towards a particular fibril polymorph. We employ fibril seeds extracted from in to vivo material to imprint the fibril structure onto the biochemically produced protein. Sequential assignments yield the secondary structure elements in the fibril state. Long-range DARR and PAR experiments confirm largely the topology observed in the ex-vivo cryo-EM study. We find that the ß-sheets identified in the NMR experiments are similar to the ß-sheets found in the cryo-EM study, with the exception of amino acids 33-42. These residues cannot be assigned by solid-state NMR, while they adopt a stable ß-sheet in the cryo-EM structure. We suggest that the differences between MAS solid-state NMR and cryo-EM data are a consequence of a second conformer involving residues 33-42. Moreover, we were able to characterize the dynamic C-terminal tail of SAA in the fibril state. The C-terminus is flexible, remains detached from the fibrils, and does not affect the SAA fibril structure as confirmed further by molecular dynamics simulations. As the C-terminus can potentially interact with other cellular components, binding to cellular targets can affect its accessibility for protease digestion.

6.
Amyloid ; 29(4): 245-254, 2022 Dec.
Article En | MEDLINE | ID: mdl-35533055

Lysozyme-derived (ALys) amyloidosis is a rare type of hereditary amyloidosis. Nine amyloidogenic variants and ∼30 affected families have been described worldwide. The most common manifestations are renal dysfunction, gastrointestinal tract symptoms, and sicca syndrome. We report on the clinical course of ten patients from six families representing one of the largest cohorts published so far. Seven patients carried the W64R variant showing the whole spectrum of ALys-associated symptoms. Two patients-a mother-son pair-carried a novel lysozyme variant, which was associated with nephropathy and peripheral polyneuropathy. In accordance with previous findings, the phenotype resembled within these families but did not correlate with the genotype. To gain insights into the effect of the variants at the molecular level, we analysed the structure of lysozyme and performed comparative computational predictions on aggregation propensity and conformational stability. Our study supports that decreased conformational stability is a key factor for lysozyme variants to be prone to aggregation. In summary, ALys amyloidosis is a very rare, but still heterogeneous disease that can manifest at an early age. Our newly identified lysozyme variant is associated with nephropathy and peripheral polyneuropathy. Further research is needed to understand its pathogenesis and to enable the development of new treatments.


Amyloidosis, Familial , Amyloidosis , Gastrointestinal Diseases , Kidney Diseases , Polyneuropathies , Humans , Muramidase/genetics , Amyloidosis/genetics , Amyloidosis/pathology , Amyloidosis, Familial/genetics , Amyloidosis, Familial/pathology , Kidney Diseases/pathology
7.
Nat Commun ; 13(1): 85, 2022 01 10.
Article En | MEDLINE | ID: mdl-35013242

Several studies showed that seeding of solutions of monomeric fibril proteins with ex vivo amyloid fibrils accelerated the kinetics of fibril formation in vitro but did not necessarily replicate the seed structure. In this research we use cryo-electron microscopy and other methods to analyze the ability of serum amyloid A (SAA)1.1-derived amyloid fibrils, purified from systemic AA amyloidosis tissue, to seed solutions of recombinant SAA1.1 protein. We show that 98% of the seeded fibrils remodel the full fibril structure of the main ex vivo fibril morphology, which we used for seeding, while they are notably different from unseeded in vitro fibrils. The seeded fibrils show a similar proteinase K resistance as ex vivo fibrils and are substantially more stable to proteolytic digestion than unseeded in vitro fibrils. Our data support the view that the fibril morphology contributes to determining proteolytic stability and that pathogenic amyloid fibrils arise from proteolytic selection.


Amyloid/chemistry , Serum Amyloid A Protein/chemistry , Amyloidosis/genetics , Amyloidosis/pathology , Animals , Cloning, Molecular , Cryoelectron Microscopy , Endopeptidase K/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Mice , Mice, Transgenic , Molecular Dynamics Simulation , Protein Conformation , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Stability , Proteolysis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Serum Amyloid A Protein/genetics , Serum Amyloid A Protein/metabolism
8.
Sci Rep ; 11(1): 24377, 2021 12 21.
Article En | MEDLINE | ID: mdl-34934110

As a conserved defense mechanism, many bacteria produce antimicrobial peptides, called bacteriocins, which provide a colonization advantage in a multispecies environment. Here the first bacteriocin of Streptococcus anginosus, designated Angicin, is described. S. anginosus is commonly described as a commensal, however it also possesses a high pathogenic potential. Therefore, understanding factors contributing to its host colonization and persistence are important. A radial diffusion assay was used to identify S. anginosus BSU 1211 as a potent bacteriocin producer. By genetic mutagenesis the background of bacteriocin production and the bacteriocin gene itself were identified. Synthetic Angicin shows high activity against closely related streptococci, listeria and vancomycin resistant enterococci. It has a fast mechanism of action and causes a membrane disruption in target cells. Angicin, present in cell free supernatant, is insensitive to changes in temperature from - 70 to 90 °C and pH values from 2 to 10, suggesting that it represents an interesting compound for potential applications in food preservation or clinical settings.


Bacterial Proteins/metabolism , Bacteriocins/pharmacology , Gene Expression Regulation, Bacterial , Listeria/drug effects , Streptococcus anginosus/metabolism , Vancomycin-Resistant Enterococci/drug effects , Bacterial Proteins/genetics , Streptococcus anginosus/genetics , Streptococcus anginosus/growth & development , Streptococcus anginosus/isolation & purification
9.
Nat Commun ; 12(1): 6434, 2021 11 05.
Article En | MEDLINE | ID: mdl-34741031

Systemic AL amyloidosis is a rare disease that is caused by the misfolding of immunoglobulin light chains (LCs). Potential drivers of amyloid formation in this disease are post-translational modifications (PTMs) and the mutational changes that are inserted into the LCs by somatic hypermutation. Here we present the cryo electron microscopy (cryo-EM) structure of an ex vivo λ1-AL amyloid fibril whose deposits disrupt the ordered cardiomyocyte structure in the heart. The fibril protein contains six mutational changes compared to the germ line and three PTMs (disulfide bond, N-glycosylation and pyroglutamylation). Our data imply that the disulfide bond, glycosylation and mutational changes contribute to determining the fibril protein fold and help to generate a fibril morphology that is able to withstand proteolytic degradation inside the body.


Immunoglobulin Light-chain Amyloidosis/metabolism , Cryoelectron Microscopy , Glycosylation , Immunoglobulin Light-chain Amyloidosis/genetics , Mutation , Protein Conformation , Protein Folding
10.
Amyloid ; 28(4): 243-251, 2021 Dec.
Article En | MEDLINE | ID: mdl-34338090

Several studies recently showed that ex vivo fibrils from patient or animal tissue were structurally different from in vitro formed fibrils from the same polypeptide chain. Analysis of serum amyloid A (SAA) and Aß-derived amyloid fibrils additionally revealed that ex vivo fibrils were more protease stable than in vitro fibrils. These observations gave rise to the proteolytic selection hypothesis that suggested that disease-associated amyloid fibrils were selected inside the body by their ability to resist endogenous clearance mechanisms. We here show, for more than twenty different fibril samples, that ex vivo fibrils are more protease stable than in vitro fibrils. These data support the idea of a proteolytic selection of pathogenic amyloid fibril morphologies and help to explain why only few amino acid sequences lead to amyloid diseases, although many, if not all, polypeptide chains can form amyloid fibrils in vitro.


Amyloid , Amyloidosis , Amino Acid Sequence , Animals , Humans , Peptide Hydrolases , Serum Amyloid A Protein
11.
Nat Commun ; 12(1): 875, 2021 02 08.
Article En | MEDLINE | ID: mdl-33558536

Systemic AL amyloidosis is a debilitating and potentially fatal disease that arises from the misfolding and fibrillation of immunoglobulin light chains (LCs). The disease is patient-specific with essentially each patient possessing a unique LC sequence. In this study, we present two ex vivo fibril structures of a λ3 LC. The fibrils were extracted from the explanted heart of a patient (FOR005) and consist of 115-residue fibril proteins, mainly from the LC variable domain. The fibril structures imply that a 180° rotation around the disulfide bond and a major unfolding step are necessary for fibrils to form. The two fibril structures show highly similar fibril protein folds, differing in only a 12-residue segment. Remarkably, the two structures do not represent separate fibril morphologies, as they can co-exist at different z-axial positions within the same fibril. Our data imply the presence of structural breaks at the interface of the two structural forms.


Amyloid/ultrastructure , Cryoelectron Microscopy , Immunoglobulin Light-chain Amyloidosis/metabolism , Amino Acid Sequence , Female , Humans , Immunoglobulin Light Chains/metabolism , Middle Aged , Mutation/genetics , Protein Aggregates , Protein Conformation
12.
Nat Commun ; 12(1): 1013, 2021 02 12.
Article En | MEDLINE | ID: mdl-33579941

Systemic AA amyloidosis is a world-wide occurring protein misfolding disease of humans and animals. It arises from the formation of amyloid fibrils from serum amyloid A (SAA) protein. Using cryo electron microscopy we here show that amyloid fibrils which were purified from AA amyloidotic mice are structurally different from fibrils formed from recombinant SAA protein in vitro. Ex vivo amyloid fibrils consist of fibril proteins that contain more residues within their ordered parts and possess a higher ß-sheet content than in vitro fibril proteins. They are also more resistant to proteolysis than their in vitro formed counterparts. These data suggest that pathogenic amyloid fibrils may originate from proteolytic selection, allowing specific fibril morphologies to proliferate and to cause damage to the surrounding tissue.


Amyloid/metabolism , Amyloidosis/metabolism , Serum Amyloid A Protein/metabolism , Animals , Cryoelectron Microscopy , Mice , Models, Molecular , Protein Conformation, beta-Strand , Recombinant Proteins , Serum Amyloid A Protein/genetics
13.
Sensors (Basel) ; 19(3)2019 Jan 30.
Article En | MEDLINE | ID: mdl-30704095

The estimation of the reliability of magnetic field sensors against failure is a critical point concerning their application for industrial purposes. Due to the physical stochastic nature of the failure events, this can only be done by means of a statistical approach which is extremely time consuming and prevents a continuous observation of the production. Here, we present a novel microstructure design for a parallel measurement of the lifetime characteristics of a sensor population. By making use of two alternative designs and the Weibull statistical distribution function, we are able to measure the lifetime characteristics of a CoFeB/MgO/CoFeB tunneling junction population. The main parameters governing the time evolution of the failure rate are estimated and discussed and the suitability of the microstructure for highly reliable sensor application is proven.

14.
Chem Commun (Camb) ; 54(28): 3532-3535, 2018 Apr 03.
Article En | MEDLINE | ID: mdl-29565436

Serum amyloid A action in immune response and deposition in inflammation-linked amyloidosis involve SAA-lipid interactions. We show that SAA sequesters neutral and anionic phospholipids and their hydrolytic products to form nanoparticles, suggesting a synergy with phospholipase A2. The lipid charge and shape affect SAA protection from proteolysis, aggregation and fibrillogenesis.


Esters/chemistry , Phospholipids/chemistry , Proteolysis , Serum Amyloid A Protein/chemistry , Hydrolysis
15.
Biochem Biophys Res Commun ; 497(3): 857-862, 2018 03 11.
Article En | MEDLINE | ID: mdl-29458025

Intracerebral injection of brain extracts from Alzheimer's disease (AD) patients into appropriate mouse models was previously found to drastically accelerate the deposition of Aß amyloid in the recipient animals indicating a prion-like activity. In this study we show that this prion-like activity can be also identified by using a cell culture model of Aß plaque formation. Analysis of biochemical fractions of AD brain extract indicate that the seeding-activity correlated with the presence of Aß peptide and Aß-derived aggregates. In vitro-formed fibrils were also active but their activity was low and depending on the fibril structure and conditions of fibril formation. Our data indicate a conformational basis of the observed seeding effect and suggest the utility of our cell model for further studies on the prion-like activity of AD extracts.


Alzheimer Disease/pathology , Amyloid beta-Peptides/ultrastructure , Amyloid/ultrastructure , Brain Chemistry , Brain/pathology , Peptide Fragments/ultrastructure , Protein Aggregates , Amyloid/analysis , Amyloid beta-Peptides/analysis , Humans , Peptide Fragments/analysis , Protein Conformation , Protein Folding
16.
Proc Natl Acad Sci U S A ; 114(32): E6507-E6515, 2017 08 08.
Article En | MEDLINE | ID: mdl-28743750

Serum amyloid A (SAA) is an acute-phase plasma protein that functions in innate immunity and lipid homeostasis. SAA is a protein precursor of reactive AA amyloidosis, the major complication of chronic inflammation and one of the most common human systemic amyloid diseases worldwide. Most circulating SAA is protected from proteolysis and misfolding by binding to plasma high-density lipoproteins. However, unbound soluble SAA is intrinsically disordered and is either rapidly degraded or forms amyloid in a lysosome-initiated process. Although acidic pH promotes amyloid fibril formation by this and many other proteins, the molecular underpinnings are unclear. We used an array of spectroscopic, biochemical, and structural methods to uncover that at pH 3.5-4.5, murine SAA1 forms stable soluble oligomers that are maximally folded at pH 4.3 with ∼35% α-helix and are unusually resistant to proteolysis. In solution, these oligomers neither readily convert into mature fibrils nor bind lipid surfaces via their amphipathic α-helices in a manner typical of apolipoproteins. Rather, these oligomers undergo an α-helix to ß-sheet conversion catalyzed by lipid vesicles and disrupt these vesicles, suggesting a membranolytic potential. Our results provide an explanation for the lysosomal origin of AA amyloidosis. They suggest that high structural stability and resistance to proteolysis of SAA oligomers at pH 3.5-4.5 help them escape lysosomal degradation, promote SAA accumulation in lysosomes, and ultimately damage cellular membranes and liberate intracellular amyloid. We posit that these soluble prefibrillar oligomers provide a missing link in our understanding of the development of AA amyloidosis.


Amyloidosis , Intracellular Membranes , Lysosomes , Protein Multimerization , Serum Amyloid A Protein , Amyloidosis/metabolism , Amyloidosis/pathology , Animals , Hydrogen-Ion Concentration , Intracellular Membranes/metabolism , Intracellular Membranes/pathology , Lysosomes/chemistry , Lysosomes/metabolism , Lysosomes/pathology , Mice , Protein Structure, Secondary , Serum Amyloid A Protein/chemistry , Serum Amyloid A Protein/metabolism
17.
Sci Rep ; 7(1): 6170, 2017 07 21.
Article En | MEDLINE | ID: mdl-28733641

Amyloid A (AA) amyloidosis is a systemic protein misfolding disease affecting humans and other vertebrates. While the protein precursor in humans and mice is the acute-phase reactant serum amyloid A (SAA) 1.1, the deposited fibrils consist mainly of C-terminally truncated SAA fragments, termed AA proteins. For yet unknown reasons, phenotypic variations in the AA amyloid distribution pattern are clearly associated with specific AA proteins. Here we describe a bacterial expression system and chromatographic strategies to obtain significant amounts of C-terminally truncated fragments of murine SAA1.1 that correspond in truncation position to relevant pathological AA proteins found in humans. This enables us to investigate systematically structural features of derived fibrils. All fragments form fibrils under nearly physiological conditions that show similar morphological appearance and amyloid-like properties as evident from amyloid-specific dye binding, transmission electron microscopy and infrared spectroscopy. However, infrared spectroscopy suggests variations in the structural organization of the amyloid fibrils that might be derived from a modulating role of the C-terminus for the fibril structure. These results provide insights, which can help to get a better understanding of the molecular mechanisms underlying the different clinical phenotypes of AA amyloidosis.


Amyloid/chemistry , Serum Amyloid A Protein/chemistry , Serum Amyloid A Protein/genetics , Amyloid/genetics , Animals , Mice , Microscopy, Electron, Transmission , Models, Molecular , Protein Conformation , Protein Domains , Recombinant Proteins/chemistry
18.
EMBO Rep ; 18(8): 1352-1366, 2017 08.
Article En | MEDLINE | ID: mdl-28637682

Serum amyloid A1 (SAA1) is an apolipoprotein that binds to the high-density lipoprotein (HDL) fraction of the serum and constitutes the fibril precursor protein in systemic AA amyloidosis. We here show that HDL binding blocks fibril formation from soluble SAA1 protein, whereas internalization into mononuclear phagocytes leads to the formation of amyloid. SAA1 aggregation in the cell model disturbs the integrity of vesicular membranes and leads to lysosomal leakage and apoptotic death. The formed amyloid becomes deposited outside the cell where it can seed the fibrillation of extracellular SAA1. Our data imply that cells are transiently required in the amyloidogenic cascade and promote the initial nucleation of the deposits. This mechanism reconciles previous evidence for the extracellular location of deposits and amyloid precursor protein with observations the cells are crucial for the formation of amyloid.


Amyloid beta-Protein Precursor/metabolism , Amyloid/metabolism , Serum Amyloid A Protein/metabolism , Amyloidosis , Animals , Cell Line , Clathrin/physiology , Endocytosis , Humans , Macrophages/metabolism , Mice , Models, Biological , Protein Aggregates
19.
Angew Chem Int Ed Engl ; 56(26): 7510-7514, 2017 06 19.
Article En | MEDLINE | ID: mdl-28544119

Systemic amyloidosis is caused by the misfolding of a circulating amyloid precursor protein and the deposition of amyloid fibrils in multiple organs. Chemical and biophysical analysis of amyloid fibrils from human AL and murine AA amyloidosis reveal the same fibril morphologies in different tissues or organs of one patient or diseased animal. The observed structural similarities concerned the fibril morphology, the fibril protein primary and secondary structures, the presence of post-translational modifications and, in case of the AL fibrils, the partially folded characteristics of the polypeptide chain within the fibril. Our data imply for both analyzed forms of amyloidosis that the pathways of protein misfolding are systemically conserved; that is, they follow the same rules irrespective of where inside one body fibrils are formed or accumulated.


Amyloid beta-Protein Precursor/metabolism , Amyloidosis/metabolism , Protein Folding , Adipose Tissue/metabolism , Amino Acid Sequence , Animals , Electrophoresis, Polyacrylamide Gel , Humans , Mass Spectrometry , Mice , Microscopy, Electron, Transmission , Myocardium/metabolism , Peptides/metabolism , Protein Processing, Post-Translational , Protein Structure, Secondary , Spleen/metabolism , X-Ray Diffraction
20.
Sci Rep ; 7: 45683, 2017 03 31.
Article En | MEDLINE | ID: mdl-28361953

Systemic AA amyloidosis arises from the misfolding of serum amyloid A1 (SAA1) protein and the deposition of AA amyloid fibrils at multiple sites within the body. Previous research already established that mononuclear phagocytes are crucial for the formation of the deposits in vivo and exposure of cultures of such cells to SAA1 protein induces the formation of amyloid deposits within the culture dish. In this study we show that both non-fibrillar and fibrillar SAA1 protein can be readily transferred between cultured J774A.1 cells, a widely used model of mononuclear phagocytes. We find that the exchange is generally faster with non-fibrillar SAA1 protein than with fibrils. Exchange is blocked if cells are separated by a membrane, while increasing the volume of cell culture medium had only small effects on the observed exchange efficiency. Taken together with scanning electron microscopy showing the presence of the respective types of physical interactions between the cultured cells, we conclude that the transfer of SAA1 protein depends on direct cell-to-cell contacts or tunneling nanotubes.


Amyloidosis/metabolism , Cell Communication , Serum Amyloid A Protein/metabolism , Amyloid/metabolism , Animals , Cells, Cultured , Mice , Phagocytes/metabolism
...