Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Stem Cells Transl Med ; 12(11): 707-713, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37696005

ABSTRACT

Various preclinical stroke models have demonstrated the neuroprotective effects of extracellular vesicles (EVs) obtained from several types of cells, including neurons, astrocytes, microglia, neuronal progenitor cells, bone marrow stem cells, and mesenchymal stem cells. EVs interfere with key mechanisms in stroke pathophysiology such as cell death, neuroinflammation, autophagy, and angiogenesis. The mode of action and efficacy depend on the specific EV content, including miRNAs, proteins, and lipids, which can be modified through (I) bioengineering methods, (II) choice of source cells, and (III) modification of the source cell environment. Indeed, modifying the environment by preconditioning the EV-secreting cells with oxygen-glucose deprivation or medium modification revealed superior neuroprotective effects in stroke models. Although the concept of preconditioned EVs is relatively novel, it holds promise for the future treatment of ischemic stroke. Here, we give a brief overview about the main mechanisms of EV-induced neuroprotection and discuss the current status of preconditioning concepts for EV-treatment of ischemic stroke.


Subject(s)
Extracellular Vesicles , Ischemic Stroke , Mesenchymal Stem Cells , Neuroprotective Agents , Stroke , Humans , Neuroprotective Agents/pharmacology , Stroke/therapy , Extracellular Vesicles/metabolism
2.
Int J Mol Sci ; 24(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36901765

ABSTRACT

Ischemic stroke is the main cause of death and the most common cause of acquired physical disability worldwide. Recent demographic changes increase the relevance of stroke and its sequelae. The acute treatment for stroke is restricted to causative recanalization and restoration of cerebral blood flow, including both intravenous thrombolysis and mechanical thrombectomy. Still, only a limited number of patients are eligible for these time-sensitive treatments. Hence, new neuroprotective approaches are urgently needed. Neuroprotection is thus defined as an intervention resulting in the preservation, recovery, and/or regeneration of the nervous system by interfering with the ischemic-triggered stroke cascade. Despite numerous preclinical studies generating promising data for several neuroprotective agents, successful bench-to-bedside translations are still lacking. The present study provides an overview of current approaches in the research field of neuroprotective stroke treatment. Aside from "traditional" neuroprotective drugs focusing on inflammation, cell death, and excitotoxicity, stem-cell-based treatment methods are also considered. Furthermore, an overview of a prospective neuroprotective method using extracellular vesicles that are secreted from various stem cell sources, including neural stem cells and bone marrow stem cells, is also given. The review concludes with a short discussion on the microbiota-gut-brain axis that may serve as a potential target for future neuroprotective therapies.


Subject(s)
Brain Ischemia , Ischemic Stroke , Neural Stem Cells , Neuroprotective Agents , Stroke , Humans , Neuroprotection , Brain Ischemia/drug therapy , Ischemic Stroke/drug therapy , Prospective Studies , Stroke/therapy , Neuroprotective Agents/therapeutic use
3.
Int J Mol Sci ; 23(10)2022 May 11.
Article in English | MEDLINE | ID: mdl-35628192

ABSTRACT

Despite tremendous progress in modern-day stroke therapy, ischemic stroke remains a disease associated with a high socioeconomic burden in industrialized countries. In light of demographic change, these health care costs are expected to increase even further. The current causal therapeutic treatment paradigms focus on successful thrombolysis or thrombectomy, but only a fraction of patients qualify for these recanalization therapies because of therapeutic time window restrictions or contraindications. Hence, adjuvant therapeutic concepts such as neuroprotection are urgently needed. A bench-to-bedside transfer of neuroprotective approaches under stroke conditions, however, has not been established after more than twenty years of research, albeit a great many data have demonstrated several neuroprotective drugs to be effective in preclinical stroke settings. Prominent examples of substances supported by extensive preclinical evidence but which failed clinical trials are tirilazad and disodium 2,4-sulphophenyl-N-tert-butylnitrone (NXY-059). The NXY-059 trial, for instance, was retrospectively shown to have a seriously weak study design, a trial of insufficient quality and a poor statistical analysis, although it initially met the recommendations of the STAIR committee. In light of currently ongoing novel neuroprotective stroke trials, such as ESCAPE-NA, and to avoid the mistakes made in the past, an improvement in study quality in the field of stroke neuroprotection is urgently needed. In the present review, animal models closely reflecting the "typical" stroke patient, occlusion techniques and the appropriate choice of time windows are discussed. In this context, the STAIR recommendations could provide a useful orientation. Taking all of this into account, a new dawn for neuroprotection might be possible.


Subject(s)
Neuroprotective Agents , Stroke , Animals , Humans , Neuroprotection , Neuroprotective Agents/therapeutic use , Retrospective Studies , Stroke/drug therapy , Stroke/etiology , Translational Research, Biomedical
4.
Neural Regen Res ; 16(12): 2383-2387, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33907010

ABSTRACT

Lithium has been used in the treatment of bipolar disorders for decades, but the exact mechanisms of action remain elusive to this day. Recent evidence suggests that lithium is critically involved in a variety of signaling pathways affecting apoptosis, inflammation, and neurogenesis, all of which contributing to the complex pathophysiology of various neurological diseases. As a matter of fact, preclinical work reports both acute and long-term neuroprotection in distinct neurological disease models such as Parkinson's disease, traumatic brain injury, Alzheimer's disease, and ischemic stroke. Lithium treatment reduces cell injury, decreases α synuclein aggregation and Tau protein phosphorylation, modulates inflammation and even stimulates neuroregeneration under experimental conditions of Parkinson's disease, traumatic brain injury, and Alzheimer's disease. The therapeutic impact of lithium under conditions of ischemic stroke was also studied in numerous preclinical in vitro and in vivo studies, giving rise to a randomized double-blind clinical stroke trial. The preclinic data revealed a lithium-induced upregulation of anti-apoptotic proteins such as B-cell lymphoma 2, heat shock protein 70, and activated protein 1, resulting in decreased neuronal cell loss. Lithium, however, does not only yield postischemic neuroprotection but also enhances endogenous neuroregeneration by stimulating neural stem cell proliferation and by regulating distinct signaling pathways such as the RE1-silencing transcription factor. In line with this, lithium treatment has been shown to modulate postischemic cytokine secretion patterns, diminishing microglial activation and stabilizing blood-brain barrier integrity yielding reduced levels of neuroinflammation. The aforementioned observations culminated in a first clinical trial, which revealed an improved motor recovery in patients with cortical stroke after lithium treatment. Beside its well-known psychiatric indications, lithium is thus a promising neuroprotective candidate for the aforementioned neurological diseases. A detailed understanding of the lithium-induced mechanisms, however, is important for prospective clinical trials which may pave the way for a successful bench-to-bedside translation in the future. In this review, we will give an overview of lithium-induced neuroprotective mechanisms under various pathological conditions, with special emphasis on ischemic stroke.

5.
Arterioscler Thromb Vasc Biol ; 41(3): 1127-1145, 2021 03.
Article in English | MEDLINE | ID: mdl-33327747

ABSTRACT

OBJECTIVE: Extracellular vesicles (EVs) derived from neural progenitor cells enhance poststroke neurological recovery, albeit the underlying mechanisms remain elusive. Since previous research described an enhanced poststroke integrity of the blood-brain barrier (BBB) upon systemic transplantation of neural progenitor cells, we examined if neural progenitor cell-derived EVs affect BBB integrity and which cellular mechanisms are involved in the process. Approach and Results: Using in vitro models of primary brain endothelial cell (EC) cultures as well as co-cultures of brain ECs (ECs) and astrocytes exposed to oxygen glucose deprivation, we examined the effects of EVs or vehicle on microvascular integrity. In vitro data were confirmed using a mouse transient middle cerebral artery occlusion model. Cultured ECs displayed increased ABCB1 (ATP-binding cassette transporter B1) levels when exposed to oxygen glucose deprivation, which was reversed by treatment with EVs. The latter was due to an EV-induced inhibition of the NF-κB (nuclear factor-κB) pathway. Using a BBB co-culture model of ECs and astrocytes exposed to oxygen glucose deprivation, EVs stabilized the BBB and ABCB1 levels without affecting the transcellular electrical resistance of ECs. Likewise, EVs yielded reduced Evans blue extravasation, decreased ABCB1 expression as well as an inhibition of the NF-κB pathway, and downstream matrix metalloproteinase 9 (MMP-9) activity in stroke mice. The EV-induced inhibition of the NF-κB pathway resulted in a poststroke modulation of immune responses. CONCLUSIONS: Our findings suggest that EVs enhance poststroke BBB integrity via ABCB1 and MMP-9 regulation, attenuating inflammatory cell recruitment by inhibition of the NF-κB pathway. Graphic Abstract: A graphic abstract is available for this article.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Blood-Brain Barrier/physiology , NF-kappa B/metabolism , Stroke/metabolism , Animals , Cell Survival , Cells, Cultured , Coculture Techniques , Disease Models, Animal , Endothelial Cells/metabolism , Extracellular Vesicles/metabolism , Glucose/metabolism , Hypoxia/metabolism , Hypoxia/pathology , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred C57BL , Neural Stem Cells/metabolism , Oxygen/metabolism , Stroke/pathology , Transcription Factor RelA/metabolism , Zonula Occludens-1 Protein/metabolism
6.
Stem Cells Transl Med ; 10(3): 357-373, 2021 03.
Article in English | MEDLINE | ID: mdl-33146943

ABSTRACT

Lithium is neuroprotective in preclinical stroke models. In addition to that, poststroke neuroregeneration is stimulated upon transplantation of mesenchymal stem cells (MSCs). Preconditioning of MSCs with lithium further enhances the neuroregenerative potential of MSCs, which act by secreting extracellular vesicles (EVs). The present work analyzed whether MSC preconditioning with lithium modifies EV secretion patterns, enhancing the therapeutic potential of such derived EVs (Li-EVs) in comparison with EVs enriched from native MSCs. Indeed, Li-EVs significantly enhanced the resistance of cultured astrocytes, microglia, and neurons against hypoxic injury when compared with controls and to native EV-treated cells. Using a stroke mouse model, intravenous delivery of Li-EVs increased neurological recovery and neuroregeneration for as long as 3 months in comparison with controls and EV-treated mice, albeit the latter also showed significantly better behavioral test performance compared with controls. Preconditioning of MSCs with lithium also changed the secretion patterns for such EVs, modifying the contents of various miRNAs within these vesicles. As such, Li-EVs displayed significantly increased levels of miR-1906, which has been shown to be a new regulator of toll-like receptor 4 (TLR4) signaling. Li-EVs reduced posthypoxic and postischemic TLR4 abundance, resulting in an inhibition of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway, decreased proteasomal activity, and declined both inducible NO synthase and cyclooxygenase-2 expression, all of which culminated in reduced levels of poststroke cerebral inflammation. Conclusively, the present study demonstrates, for the first time, an enhanced therapeutic potential of Li-EVs compared with native EVs, interfering with a novel signaling pathway that yields both acute neuroprotection and enhanced neurological recovery.


Subject(s)
Extracellular Vesicles , Lithium , Mesenchymal Stem Cells , MicroRNAs , Stroke , Toll-Like Receptor 4 , Animals , Lithium/pharmacology , Mice , MicroRNAs/genetics , Neuroprotection , Stroke/therapy , Toll-Like Receptor 4/genetics
7.
Neuropharmacology ; 181: 108357, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33065166

ABSTRACT

Lithium induces neuroprotection against cerebral ischemia, although the underlying mechanisms remain elusive. We have previously suggested a role for lithium in calcium regulation and (extra)cerebral vessel relaxation under non-ischemic conditions. Herein, we aimed to investigate whether or not lithium contributes to post-stroke stabilization of the blood-brain barrier (BBB) in mice. Using an oxygen-glucose-deprivation (OGD) model, we first analyzed the impact of lithium treatment on endothelial cells (EC) in vitro. Indeed, such treatment of EC exposed to OGD resulted in increased cell survival as well as in enhanced expression of tight junction proteins and P-glycoprotein. Additional in vivo studies demonstrated an increased stabilization of the BBB upon lithium treatment in stroke mice, as shown by a reduced Evans blue extravasation and an elevation of tight junction protein expression. Furthermore, stabilization of the BBB as a consequence of lithium treatment was associated with an inhibition of matrix metalloproteinase-9 activity, independent of calveolin-1 regulation. In line with this, flow cytometry analysis revealed that lithium treatment led to a decreased neutrophil invasion and an increased T cell extravasation from the blood compartment towards the brain parenchyma. We finally identified the pro-survival MAPK/ERK1/2 pathway as the key regulator of the impact of lithium on the BBB. In conclusion, we demonstrate for the first time that lithium is able to enhance post-stroke BBB integrity. Importantly, our work delivers novel insights into the exact mechanism of lithium-induced acute neuroprotection, providing critical information for future clinical trials involving lithium treatment in stroke patients.


Subject(s)
Blood-Brain Barrier/drug effects , Cell Movement/drug effects , Immunity, Cellular/drug effects , Lithium/pharmacology , MAP Kinase Signaling System/drug effects , Animals , Cell Survival/drug effects , Endothelial Cells/drug effects , Glucose/deficiency , Hypoxia/pathology , Ischemic Stroke/drug therapy , Matrix Metalloproteinase 9/drug effects , Matrix Metalloproteinase Inhibitors/pharmacology , Mice , Neutrophil Infiltration/drug effects , T-Lymphocytes/drug effects , Tight Junctions/drug effects
8.
Cells ; 9(1)2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31888056

ABSTRACT

CCL11 has recently been shown to differentially affect cell survival under various pathological conditions including stroke. Indeed, CCL11 promotes neuroregeneration in neonatal stroke mice. The impact of CCL11 on the adult ischemic brain, however, remains elusive. We therefore studied the effect of ectopic CCL11 on both adolescent (six-week) and adult (six-month) C57BL6 mice exposed to stroke. Intraperitoneal application of CCL11 significantly aggravated acute brain injury in adult mice but not in adolescent mice. Likewise, post-stroke neurological recovery after four weeks was significantly impaired in adult mice whilst CCL11 was present. On the contrary, CCL11 stimulated gliogenesis and neurogenesis in adolescent mice. Flow cytometry analysis of blood and brain samples revealed a modification of inflammation by CCL11 at subacute stages of the disease. In adolescent mice, CCL11 enhances microglial cell, B and T lymphocyte migration towards the brain, whereas only the number of B lymphocytes is increased in the adult brain. Finally, the CCL11 inhibitor SB297006 significantly reversed the aforementioned effects. Our study, for the first time, demonstrates CCL11 to be a key player in mediating secondary cell injury under stroke conditions. Interfering with this pathway, as shown for SB297006, might thus be an interesting approach for future stroke treatment paradigms.


Subject(s)
Brain Injuries/etiology , Chemokine CCL11/genetics , Disease Susceptibility , Nerve Regeneration/genetics , Stroke/complications , Age Factors , Animals , Apoptosis/genetics , Autophagy/genetics , Biomarkers , Brain Infarction/complications , Brain Injuries/metabolism , Brain Injuries/pathology , Brain Ischemia/complications , Chemokine CCL11/metabolism , Disease Models, Animal , Disease Progression , Disease Susceptibility/immunology , Immunohistochemistry , Immunophenotyping , Male , Mice , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL