Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 175
Filter
1.
Transl Psychiatry ; 14(1): 296, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39025838

ABSTRACT

Cytochrome P450 enzymes including CYP2C19 and CYP2D6 are important for antidepressant metabolism and polymorphisms of these genes have been determined to predict metabolite levels. Nonetheless, more evidence is needed to understand the impact of genetic variations on antidepressant response. In this study, individual clinical and genetic data from 13 studies of European and East Asian ancestry populations were collected. The antidepressant response was clinically assessed as remission and percentage improvement. Imputed genotype was used to translate genetic polymorphisms to metabolic phenotypes (poor, intermediate, normal, and rapid+ultrarapid) of CYP2C19 and CYP2D6. CYP2D6 structural variants cannot be imputed from genotype data, limiting the determination of metabolic phenotypes, and precluding testing for association with response. The association of CYP2C19 metabolic phenotypes with treatment response was examined using normal metabolizers as the reference. Among 5843 depression patients, a higher remission rate was found in CYP2C19 poor metabolizers compared to normal metabolizers at nominal significance but did not survive after multiple testing correction (OR = 1.46, 95% CI [1.03, 2.06], p = 0.033, heterogeneity I2 = 0%, subgroup difference p = 0.72). No metabolic phenotype was associated with percentage improvement from baseline. After stratifying by antidepressants primarily metabolized by CYP2C19, no association was found between metabolic phenotypes and antidepressant response. Metabolic phenotypes showed differences in frequency, but not effect, between European- and East Asian-ancestry studies. In conclusion, metabolic phenotypes imputed from genetic variants using genotype were not associated with antidepressant response. CYP2C19 poor metabolizers could potentially contribute to antidepressant efficacy with more evidence needed. Sequencing and targeted pharmacogenetic testing, alongside information on side effects, antidepressant dosage, depression measures, and diverse ancestry studies, would more fully capture the influence of metabolic phenotypes.


Subject(s)
Antidepressive Agents , Cytochrome P-450 CYP2C19 , Cytochrome P-450 CYP2D6 , Genotype , Humans , Cytochrome P-450 CYP2C19/genetics , Cytochrome P-450 CYP2D6/genetics , Cytochrome P-450 CYP2D6/metabolism , Antidepressive Agents/therapeutic use , Asian People/genetics , White People/genetics , Phenotype , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/genetics , Depressive Disorder, Major/metabolism , Treatment Outcome , Female , Male
2.
Int J Bipolar Disord ; 12(1): 20, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38865039

ABSTRACT

BACKGROUND: Lithium (Li) remains the treatment of choice for bipolar disorders (BP). Its mood-stabilizing effects help reduce the long-term burden of mania, depression and suicide risk in patients with BP. It also has been shown to have beneficial effects on disease-associated conditions, including sleep and cardiovascular disorders. However, the individual responses to Li treatment vary within and between diagnostic subtypes of BP (e.g. BP-I and BP-II) according to the clinical presentation. Moreover, long-term Li treatment has been linked to adverse side-effects that are a cause of concern and non-adherence, including the risk of developing chronic medical conditions such as thyroid and renal disease. In recent years, studies by the Consortium on Lithium Genetics (ConLiGen) have uncovered a number of genetic factors that contribute to the variability in Li treatment response in patients with BP. Here, we leveraged the ConLiGen cohort (N = 2064) to investigate the genetic basis of Li effects in BP. For this, we studied how Li response and linked genes associate with the psychiatric symptoms and polygenic load for medical comorbidities, placing particular emphasis on identifying differences between BP-I and BP-II. RESULTS: We found that clinical response to Li treatment, measured with the Alda scale, was associated with a diminished burden of mania, depression, substance and alcohol abuse, psychosis and suicidal ideation in patients with BP-I and, in patients with BP-II, of depression only. Our genetic analyses showed that a stronger clinical response to Li was modestly related to lower polygenic load for diabetes and hypertension in BP-I but not BP-II. Moreover, our results suggested that a number of genes that have been previously linked to Li response variability in BP differentially relate to the psychiatric symptomatology, particularly to the numbers of manic and depressive episodes, and to the polygenic load for comorbid conditions, including diabetes, hypertension and hypothyroidism. CONCLUSIONS: Taken together, our findings suggest that the effects of Li on symptomatology and comorbidity in BP are partially modulated by common genetic factors, with differential effects between BP-I and BP-II.

3.
Transl Psychiatry ; 14(1): 109, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395906

ABSTRACT

Lithium is the gold standard treatment for bipolar disorder (BD). However, its mechanism of action is incompletely understood, and prediction of treatment outcomes is limited. In our previous multi-omics study of the Pharmacogenomics of Bipolar Disorder (PGBD) sample combining transcriptomic and genomic data, we found that focal adhesion, the extracellular matrix (ECM), and PI3K-Akt signaling networks were associated with response to lithium. In this study, we replicated the results of our previous study using network propagation methods in a genome-wide association study of an independent sample of 2039 patients from the International Consortium on Lithium Genetics (ConLiGen) study. We identified functional enrichment in focal adhesion and PI3K-Akt pathways, but we did not find an association with the ECM pathway. Our results suggest that deficits in the neuronal growth cone and PI3K-Akt signaling, but not in ECM proteins, may influence response to lithium in BD.


Subject(s)
Bipolar Disorder , Lithium , Humans , Lithium/pharmacology , Lithium/therapeutic use , Bipolar Disorder/drug therapy , Bipolar Disorder/genetics , Proto-Oncogene Proteins c-akt/genetics , Phosphatidylinositol 3-Kinases/genetics , Genome-Wide Association Study , Multiomics , Focal Adhesions
4.
Res Sq ; 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38077040

ABSTRACT

Background: Lithium (Li) remains the treatment of choice for bipolar disorders (BP). Its mood-stabilizing effects help reduce the long-term burden of mania, depression and suicide risk in patients with BP. It also has been shown to have beneficial effects on disease-associated conditions, including sleep and cardiovascular disorders. However, the individual responses to Li treatment vary within and between diagnostic subtypes of BP (e.g. BP-I and BP-II) according to the clinical presentation. Moreover, long-term Li treatment has been linked to adverse side-effects that are a cause of concern and non-adherence, including the risk of developing chronic medical conditions such as thyroid and renal disease. In recent years, studies by the Consortium on Lithium Genetics (ConLiGen) have uncovered a number of genetic factors that contribute to the variability in Li treatment response in patients with BP. Here, we leveraged the ConLiGen cohort (N=2,064) to investigate the genetic basis of Li effects in BP. For this, we studied how Li response and linked genes associate with the psychiatric symptoms and polygenic load for medical comorbidities, placing particular emphasis on identifying differences between BP-I and BP-II. Results: We found that clinical response to Li treatment, measured with the Alda scale, was associated with a diminished burden of mania, depression, substance and alcohol abuse, psychosis and suicidal ideation in patients with BP-I and, in patients with BP-II, of depression only. Our genetic analyses showed that a stronger clinical response to Li was modestly related to lower polygenic load for diabetes and hypertension in BP-I but not BP-II. Moreover, our results suggested that a number of genes that have been previously linked to Li response variability in BP differentially relate to the psychiatric symptomatology, particularly to the numbers of manic and depressive episodes, and to the polygenic load for comorbid conditions, including diabetes, hypertension and hypothyroidism. Conclusions: Taken together, our findings suggest that the effects of Li on symptomatology and comorbidity in BP are partially modulated by common genetic factors, with differential effects between BP-I and BP-II.

5.
medRxiv ; 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37425775

ABSTRACT

Cytochrome P450 enzymes including CYP2C19 and CYP2D6 are important for antidepressant metabolism and polymorphisms of these genes have been determined to predict metabolite levels. Nonetheless, more evidence is needed to understand the impact of genetic variations on antidepressant response. In this study, individual clinical and genetic data from 13 studies of European and East Asian ancestry populations were collected. The antidepressant response was clinically assessed as remission and percentage improvement. Imputed genotype was used to translate genetic polymorphisms to metabolic phenotypes (poor, intermediate, normal, and rapid+ultrarapid) of CYP2C19 and CYP2D6. The association of CYP2C19 and CYP2D6 metabolic phenotypes with treatment response was examined using normal metabolizers as the reference. Among 5843 depression patients, a higher remission rate was found in CYP2C19 poor metabolizers compared to normal metabolizers at nominal significance but did not survive after multiple testing correction (OR=1.46, 95% CI [1.03, 2.06], p=0.033, heterogeneity I2=0%, subgroup difference p=0.72). No metabolic phenotype was associated with percentage improvement from baseline. After stratifying by antidepressants primarily metabolized by CYP2C19 and CYP2D6, no association was found between metabolic phenotypes and antidepressant response. Metabolic phenotypes showed differences in frequency, but not effect, between European- and East Asian-ancestry studies. In conclusion, metabolic phenotypes imputed from genetic variants using genotype were not associated with antidepressant response. CYP2C19 poor metabolizers could potentially contribute to antidepressant efficacy with more evidence needed. CYP2D6 structural variants cannot be imputed from genotype data, limiting inference of pharmacogenetic effects. Sequencing and targeted pharmacogenetic testing, alongside information on side effects, antidepressant dosage, depression measures, and diverse ancestry studies, would more fully capture the influence of metabolic phenotypes.

6.
Res Sq ; 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37461719

ABSTRACT

The link between bipolar disorder (BP) and immune dysfunction remains controversial. While epidemiological studies have long suggested an association, recent research has found only limited evidence of such a relationship. To clarify this, we investigated the contributions of immune-relevant genetic factors to the response to lithium (Li) treatment and the clinical presentation of BP. First, we assessed the association of a large collection of immune-related genes (4,925) with Li response, defined by the Retrospective Assessment of the Lithium Response Phenotype Scale (Alda scale), and clinical characteristics in patients with BP from the International Consortium on Lithium Genetics (ConLi+Gen, N = 2,374). Second, we calculated here previously published polygenic scores (PGSs) for immune-related traits and evaluated their associations with Li response and clinical features. We found several genes associated with Li response at p < 1×10- 4 values, including HAS3, CNTNAP5 and NFIB. Network and functional enrichment analyses uncovered an overrepresentation of pathways involved in cell adhesion and intercellular communication, which appear to converge on the well-known Li-induced inhibition of GSK-3ß. We also found various genes associated with BP's age-at-onset, number of mood episodes, and presence of psychosis, substance abuse and/or suicidal ideation at the exploratory threshold. These included RTN4, XKR4, NRXN1, NRG1/3 and GRK5. Additionally, PGS analyses suggested serum FAS, ECP, TRANCE and cytokine ligands, amongst others, might represent potential circulating biomarkers of Li response and clinical presentation. Taken together, our results support the notion of a relatively weak association between immunity and clinically relevant features of BP at the genetic level.

7.
Psychol Med ; 53(6): 2522-2530, 2023 04.
Article in English | MEDLINE | ID: mdl-34763734

ABSTRACT

BACKGROUND: Personality traits may predict antidepressant discontinuation and response. However, previous studies were rather small, only explored a few personality traits and did not include adverse drug effects nor the interdependency between antidepressant discontinuation patterns and response. METHODS: GENDEP included 589 patients with unipolar moderate-severe depression treated with escitalopram or nortriptyline for 12 weeks. Seven personality dimensions were measured using the self-reported 240-item Temperament and Character Inventory-Revised (TCI-R). We applied Cox proportional models to study discontinuation patterns, logistic and linear regression to investigate response and remission after 8 and 12 weeks, and mixed-effects linear models regarding time-varying treatment response and adverse drug reactions. RESULTS: Low harm avoidance, low cooperativeness, high self-transcendence and high novelty seeking were associated with higher risks for antidepressant discontinuation, independent of depressed mood, adverse drug reactions, drug, sex and age. Regression analyses showed that higher novelty seeking and cooperativeness scores were associated with a greater likelihood of response and remission after 8 and 12 weeks, respectively, but we found no correlations with response in the mixed-effects models. Only high harm avoidance was associated with more self-reported adverse effects. CONCLUSIONS: This study, representing the largest investigation between several personality traits and response to two different antidepressants, suggests that correlations between personality traits and antidepressant treatment response may be confounded by differential rates of discontinuation. Future trials on personality in the treatment of depression need to consider this interdependency and study whether interventions aiming at improving compliance for some personality types may improve response to antidepressants.


Subject(s)
Depressive Disorder, Major , Temperament , Humans , Escitalopram , Nortriptyline/adverse effects , Depressive Disorder, Major/drug therapy , Character , Antidepressive Agents/adverse effects , Personality Inventory
9.
Biol Psychiatry Glob Open Sci ; 2(2): 115-126, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35712048

ABSTRACT

Background: Antidepressants are a first-line treatment for depression. However, only a third of individuals experience remission after the first treatment. Common genetic variation, in part, likely regulates antidepressant response, yet the success of previous genome-wide association studies has been limited by sample size. This study performs the largest genetic analysis of prospectively assessed antidepressant response in major depressive disorder to gain insight into the underlying biology and enable out-of-sample prediction. Methods: Genome-wide analysis of remission (n remit = 1852, n nonremit = 3299) and percentage improvement (n = 5218) was performed. Single nucleotide polymorphism-based heritability was estimated using genome-wide complex trait analysis. Genetic covariance with eight mental health phenotypes was estimated using polygenic scores/AVENGEME. Out-of-sample prediction of antidepressant response polygenic scores was assessed. Gene-level association analysis was performed using MAGMA and transcriptome-wide association study. Tissue, pathway, and drug binding enrichment were estimated using MAGMA. Results: Neither genome-wide association study identified genome-wide significant associations. Single nucleotide polymorphism-based heritability was significantly different from zero for remission (h 2 = 0.132, SE = 0.056) but not for percentage improvement (h 2 = -0.018, SE = 0.032). Better antidepressant response was negatively associated with genetic risk for schizophrenia and positively associated with genetic propensity for educational attainment. Leave-one-out validation of antidepressant response polygenic scores demonstrated significant evidence of out-of-sample prediction, though results varied in external cohorts. Gene-based analyses identified ETV4 and DHX8 as significantly associated with antidepressant response. Conclusions: This study demonstrates that antidepressant response is influenced by common genetic variation, has a genetic overlap schizophrenia and educational attainment, and provides a useful resource for future research. Larger sample sizes are required to attain the potential of genetics for understanding and predicting antidepressant response.

12.
Br J Psychiatry ; : 1-10, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35225756

ABSTRACT

BACKGROUND: Response to lithium in patients with bipolar disorder is associated with clinical and transdiagnostic genetic factors. The predictive combination of these variables might help clinicians better predict which patients will respond to lithium treatment. AIMS: To use a combination of transdiagnostic genetic and clinical factors to predict lithium response in patients with bipolar disorder. METHOD: This study utilised genetic and clinical data (n = 1034) collected as part of the International Consortium on Lithium Genetics (ConLi+Gen) project. Polygenic risk scores (PRS) were computed for schizophrenia and major depressive disorder, and then combined with clinical variables using a cross-validated machine-learning regression approach. Unimodal, multimodal and genetically stratified models were trained and validated using ridge, elastic net and random forest regression on 692 patients with bipolar disorder from ten study sites using leave-site-out cross-validation. All models were then tested on an independent test set of 342 patients. The best performing models were then tested in a classification framework. RESULTS: The best performing linear model explained 5.1% (P = 0.0001) of variance in lithium response and was composed of clinical variables, PRS variables and interaction terms between them. The best performing non-linear model used only clinical variables and explained 8.1% (P = 0.0001) of variance in lithium response. A priori genomic stratification improved non-linear model performance to 13.7% (P = 0.0001) and improved the binary classification of lithium response. This model stratified patients based on their meta-polygenic loadings for major depressive disorder and schizophrenia and was then trained using clinical data. CONCLUSIONS: Using PRS to first stratify patients genetically and then train machine-learning models with clinical predictors led to large improvements in lithium response prediction. When used with other PRS and biological markers in the future this approach may help inform which patients are most likely to respond to lithium treatment.

13.
Psychiatr Pol ; 56(5): 1003-1016, 2022 Oct 31.
Article in English, Polish | MEDLINE | ID: mdl-37074853

ABSTRACT

Lithium is a drug of choice as a mood-stabilizer for the maintenance treatment of bipolar disorder. The prophylactic efficacy of lithium can be determined by genetic factors, partially related to a predisposition to bipolar disorder. In the field of psychiatric genetics, the first decade of the 21st century was dominated by the "candidate gene" research. In this paper, the studies on candidate genes connected with lithium prophylaxis performed at the Poznan University of Medical Sciences in 2005-2018 are presented. During this time, the polymorphisms of multiple genes have been investigated, many of which are also connected with a predisposition to bipolar illness. The associations with lithium prophylactic efficacy were found for the polymorphisms in 5HTT, ACP1, ARNTL, BDNF, COMT, DRD1, FKBP5, FYN, GLCC, NR3C1, and TIM, genes, but not those in 5HT2A, 5HT2C, DRD2, DRD3, DRD4, GRIN2B, GSK-3ß, MMP-9, and NTRK2 genes. The polymorphism of the GSK-3ß gene was found to be associated with the kidney side-effects occurring during lithium therapy. Possible roles for these genes in both the mechanism of lithium prophylactic activity and pathogenesis of bipolar mood disorder were discussed.


Subject(s)
Antipsychotic Agents , Bipolar Disorder , Humans , Lithium/therapeutic use , Glycogen Synthase Kinase 3 beta , Bipolar Disorder/drug therapy , Bipolar Disorder/genetics , Bipolar Disorder/prevention & control , Lithium Carbonate , Antipsychotic Agents/therapeutic use
14.
Behav Brain Res ; 419: 113706, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34875307

ABSTRACT

AIM: Cognitive deficits are the core factors impacting quality of life among patients diagnosed with schizophrenia. Effective method of treatment for this domain of symptoms remains lacking. Recent evidence suggests the link between impaired cognition and aberrant inflammatory response. Severity of symptoms might be linked to individual genetic predispositions and single-nucleotide polymorphisms (SNPs) in genes encoding interleukins and their receptors. Current genetic association studies include anti-inflammatory interleukins, such as IL10. Functional polymorphisms of IL10 (rs1800871, rs18008729) have been indicated to affect information processing in schizophrenia. MATERIALS AND METHODS: In this study, we analyzed the potential impact of 27 functional SNPs in 8 cytokine genes on cognitive parameters measured by Wisconsin card-sorting test (WCST) in schizophrenia group (n = 150) and healthy controls (n = 152). RESULTS: We found significant associations of two functional polymorphisms of IL10 (rs1800871, rs1800872) and WCST results. Allele A carriers in rs1800871 performed significantly better in Percent of Conceptual Level Responses (CLR%). Allele A carriers in rs1800871 and allele T carriers in rs1800872 obtained better results in Completed Categories (CC). The impact of illness duration was observed, with better performance of recent-onset patients. CONCLUSIONS: Results of this study indicate that genetic variants of inflammatory response are associated with cognitive deficits in schizophrenia. The role of cytokines in schizophrenia need to be investigated in the aspect of pro-/anti-inflammatory imbalance. Altered inflammatory response promote chronic mild inflammation in the brain and aberrant synaptic plasticity.


Subject(s)
Cognitive Dysfunction/genetics , Cognitive Dysfunction/physiopathology , Inflammation/genetics , Interleukin-10/genetics , Schizophrenia/genetics , Adult , Cognitive Dysfunction/etiology , Female , Genetic Association Studies , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Schizophrenia/complications , Young Adult
15.
Transl Psychiatry ; 11(1): 606, 2021 11 29.
Article in English | MEDLINE | ID: mdl-34845190

ABSTRACT

Lithium is the gold standard therapy for Bipolar Disorder (BD) but its effectiveness differs widely between individuals. The molecular mechanisms underlying treatment response heterogeneity are not well understood, and personalized treatment in BD remains elusive. Genetic analyses of the lithium treatment response phenotype may generate novel molecular insights into lithium's therapeutic mechanisms and lead to testable hypotheses to improve BD management and outcomes. We used fixed effect meta-analysis techniques to develop meta-analytic polygenic risk scores (MET-PRS) from combinations of highly correlated psychiatric traits, namely schizophrenia (SCZ), major depression (MD) and bipolar disorder (BD). We compared the effects of cross-disorder MET-PRS and single genetic trait PRS on lithium response. For the PRS analyses, we included clinical data on lithium treatment response and genetic information for n = 2283 BD cases from the International Consortium on Lithium Genetics (ConLi+Gen; www.ConLiGen.org ). Higher SCZ and MD PRSs were associated with poorer lithium treatment response whereas BD-PRS had no association with treatment outcome. The combined MET2-PRS comprising of SCZ and MD variants (MET2-PRS) and a model using SCZ and MD-PRS sequentially improved response prediction, compared to single-disorder PRS or to a combined score using all three traits (MET3-PRS). Patients in the highest decile for MET2-PRS loading had 2.5 times higher odds of being classified as poor responders than patients with the lowest decile MET2-PRS scores. An exploratory functional pathway analysis of top MET2-PRS variants was conducted. Findings may inform the development of future testing strategies for personalized lithium prescribing in BD.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Schizophrenia , Bipolar Disorder/drug therapy , Bipolar Disorder/genetics , Depression , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/genetics , Genetic Predisposition to Disease , Humans , Lithium/therapeutic use , Multifactorial Inheritance , Risk Factors , Schizophrenia/drug therapy , Schizophrenia/genetics
16.
Transl Psychiatry ; 11(1): 596, 2021 11 22.
Article in English | MEDLINE | ID: mdl-34811360

ABSTRACT

Many antidepressants, atomoxetine, and several antipsychotics are metabolized by the cytochrome P450 enzymes CYP2D6 and CYP2C19, and guidelines for prescribers based on genetic variants exist. Although some laboratories offer such testing, there is no consensus regarding validated methodology for clinical genotyping of CYP2D6 and CYP2C19. The aim of this paper was to cross-validate multiple technologies for genotyping CYP2D6 and CYP2C19 against each other, and to contribute to feasibility for clinical implementation by providing an enhanced range of assay options, customizable automated translation of data into haplotypes, and a workflow algorithm. AmpliChip CYP450 and some TaqMan single nucleotide variant (SNV) and copy number variant (CNV) data in the Genome-based therapeutic drugs for depression (GENDEP) study were used to select 95 samples (out of 853) to represent as broad a range of CYP2D6 and CYP2C19 genotypes as possible. These 95 included a larger range of CYP2D6 hybrid configurations than have previously been reported using inter-technology data. Genotyping techniques employed were: further TaqMan CNV and SNV assays, xTAGv3 Luminex CYP2D6 and CYP2C19, PharmacoScan, the Ion AmpliSeq Pharmacogenomics Panel, and, for samples with CYP2D6 hybrid configurations, long-range polymerase chain reactions (L-PCRs) with Sanger sequencing and Luminex. Agena MassARRAY was also used for CYP2C19. This study has led to the development of a broader range of TaqMan SNV assays, haplotype phasing methodology with TaqMan adaptable for other technologies, a multiplex genotyping method for efficient identification of some hybrid haplotypes, a customizable automated translation of SNV and CNV data into haplotypes, and a clinical workflow algorithm.


Subject(s)
Cytochrome P-450 CYP2D6 , Cytochrome P-450 Enzyme System , Cytochrome P-450 CYP2C19/genetics , Cytochrome P-450 CYP2D6/genetics , Cytochrome P-450 Enzyme System/genetics , Genotype , Genotyping Techniques
17.
J Clin Med ; 10(18)2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34575175

ABSTRACT

Bipolar disorder (BD) is a chronic mental disorder that affects more than 1% of the population worldwide. Over 65% of patients experience early onset of the disease. Most cases of juvenile bipolar disorder begin with a depressed mood episode, and up to 50% of youth initially diagnosed with major depression go onto developing a BD. Our study aimed to find biomarkers of diagnosis conversion in young patients with mood disorders. We performed a two-year follow-up study on 79 adolescent patients diagnosed with MDD or BD, with a detailed clinical assessment at five visits. We monitored diagnosis change from MDD to BD. The control group consisted of 31 healthy youths. According to the neurodevelopmental and neuroimmunological hypotheses of mood disorders, we analyzed serum levels of brain-derived neurotrophic factor (BDNF), proBDNF, epidermal growth factor (EGF), migration inhibitory factor (MIF), stem cell factor (SCF), and correlations with clinical factors. We detected a significant disease-dependent increase in EGF level in MDD and BP patients at baseline exacerbation of depressive or hypomanic/manic episodes as well as in euthymic state compared to healthy controls. No potential biological predictors of disease conversion were found. Replication studies on a larger cohort of patients are needed.

18.
Front Psychiatry ; 12: 706933, 2021.
Article in English | MEDLINE | ID: mdl-34366939

ABSTRACT

The accurate assessment of suicide risk in psychiatric, especially affective disorder diagnosed patients, remains a crucial clinical need. In this study, we applied temperament and character inventory (TCI), Barratt impulsiveness scale 11 (BIS-11), PEBL simple reaction time (SRT) test, continuous performance task (CPT), and Iowa gambling task (IGT) to seek for variables linked with attempted suicide in bipolar affective disorder group (n = 60; attempters n = 17). The main findings were: strong correlations between self-report tool scores and objective parameters in CPT; the difference between attempters and non-attempters was found in the number of correctly responded trials in IGT; only one parameter differed between attempters and non-attempters in BPI diagnosis; and no significant differences between suicide attempters and non-attempters in TCI, BIS-11, and SRT were found. These justify the conclusion that impulsivity itself is not a strong predictor, and used as a single variable might not be sufficient to indicate the high suicide risk group among bipolar patients.

19.
Sci Rep ; 11(1): 11973, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099858

ABSTRACT

Mood disorders have been discussed as being in relation to glial pathology. S100B is a calcium-binding protein, and a marker of glial dysfunctions. Although alterations in the S100B expression may play a role in various central nervous system diseases, there are no studies on the potential role of S100B in mood disorders in adolescents and young adults . In a prospective two-year follow-up study, peripheral levels of S100B were investigated in 79 adolescent/young adult patients (aged 14-24 years), diagnosed with mood disorders and compared with 31 healthy control subjects. A comprehensive clinical interview was conducted which focused on clinical symptoms and diagnosis change. The diagnosis was established and verified at each control visit. Serum S100B concentrations were determined. We detected: lower S100B levels in medicated patients, compared with those who were drug-free, and healthy controls; higher S100B levels in a depressed group with a family history of affective disorder; correlations between age and medication status; sex-dependent differences in S100B levels; and lack a of correlation between the severity of depressive or hypo/manic symptoms. The results of our study indicate that S100B might be a trait-dependent rather than a state-dependent marker. Due to the lack of such studies in the youth population, further research should be performed. A relatively small sample size, a lack of exact age-matched control group, a high drop-out rate.


Subject(s)
Biomarkers/blood , Mood Disorders/diagnosis , S100 Calcium Binding Protein beta Subunit/blood , Adolescent , Biomarkers/metabolism , Female , Follow-Up Studies , Healthy Volunteers , Humans , Longitudinal Studies , Male , Prospective Studies , S100 Calcium Binding Protein beta Subunit/metabolism , Sex Factors , Young Adult
20.
Int J Mol Sci ; 22(3)2021 Jan 24.
Article in English | MEDLINE | ID: mdl-33498969

ABSTRACT

Lithium has been the most important mood stabilizer used for the treatment of bipolar disorder and prophylaxis of manic and depressive episodes. Despite long use in clinical practice, the exact molecular mechanisms of lithium are still not well identified. Previous experimental studies produced inconsistent results due to different duration of lithium treatment and using animals without manic-like or depressive-like symptoms. Therefore, we aimed to analyze the gene expression profile in three brain regions (amygdala, frontal cortex and hippocampus) in the rat model of mania and depression during chronic lithium administration (2 and 4 weeks). Behavioral changes were verified by the forced swim test, open field test and elevated maze test. After the experiment, nucleic acid was extracted from the frontal cortex, hippocampus and amygdala. Gene expression profile was done using SurePrint G3 Rat Gene Expression whole transcriptome microarrays. Data were analyzed using Gene Spring 14.9 software. We found that chronic lithium treatment significantly influenced gene expression profile in both mania and depression models. In manic rats, chronic lithium treatment significantly influenced the expression of the genes enriched in olfactory and taste transduction pathway and long non-coding RNAs in all three brain regions. We report here for the first time that genes regulating olfactory and taste receptor pathways and long non-coding RNAs may be targeted by chronic lithium treatment in the animal model of mania.


Subject(s)
Brain/metabolism , Depression/drug therapy , Lithium/pharmacology , Mania/drug therapy , Transcriptome , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Antimanic Agents/pharmacology , Antimanic Agents/therapeutic use , Depression/genetics , Disease Models, Animal , Lithium/therapeutic use , Male , Mania/genetics , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...