Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Ann Clin Transl Neurol ; 11(1): 207-224, 2024 01.
Article En | MEDLINE | ID: mdl-38009419

OBJECTIVE: Late-onset GM2 gangliosidosis (LOGG) subtypes late-onset Tay-Sachs (LOTS) and Sandhoff disease (LOSD) are ultra-rare neurodegenerative lysosomal storage disorders presenting with weakness, ataxia, and neuropsychiatric symptoms. Previous studies considered LOTS and LOSD clinically indistinguishable; recent studies have challenged this. We performed a scoping review to ascertain whether imaging and clinical features may differentiate these diseases. METHODS: We examined MEDLINE/non-MEDLINE databases up to May 2022. Articles reporting brain imaging findings in genetically/enzymatically confirmed LOGG, symptom onset at age ≥ 10 years (or evaluated at least once ≥18 years) were included, yielding 170 LOGG patients (LOTS = 127, LOSD = 43) across 68 papers. We compared LOTS versus LOSD and performed regression analyses. Results were corrected for multiple comparisons. RESULTS: Age of onset was lower in LOTS versus LOSD (17.9 ± 8.2 vs. 23.9 ± 14.4 years, p = 0.017), although disease duration was similar (p = 0.34). LOTS more commonly had psychosis/bipolar symptoms (35.0% vs. 9.30%, p = 0.011) but less frequent swallowing problems (4.10% vs. 18.60%, p = 0.041). Cerebellar atrophy was more common in LOTS (89.0%) versus LOSD (60.5%), p < 0.0001, with more severe atrophy in LOTS (p = 0.0005). Brainstem atrophy was documented only in LOTS (14.2%). Independent predictors of LOTS versus LOSD (odds ratio [95% confidence interval]) included the presence of psychosis/bipolar symptoms (4.95 [1.59-19.52], p = 0.011), no swallowing symptoms (0.16 [0.036-0.64], p = 0.011), and cerebellar atrophy (5.81 [2.10-17.08], p = 0.0009). Lower age of onset (0.96 [0.93-1.00], p = 0.075) and tremor (2.50 [0.94-7.43], p = 0.078) were marginally statistically significant but felt relevant to include in the model. INTERPRETATION: These data suggest significant differences in symptomatology, disease course, and imaging findings between LOTS and LOSD.


Gangliosidoses, GM2 , Neurodegenerative Diseases , Psychotic Disorders , Humans , Child , Disease Progression , Atrophy , Gangliosidoses, GM2/diagnostic imaging
2.
Mol Genet Metab ; 133(4): 386-396, 2021 08.
Article En | MEDLINE | ID: mdl-34226107

OBJECTIVE: Our study aimed to quantify structural changes in relation to metabolic abnormalities in the cerebellum, thalamus, and parietal cortex of patients with late-onset GM2-gangliosidosis (LOGG), which encompasses late-onset Tay-Sachs disease (LOTS) and Sandhoff disease (LOSD). METHODS: We enrolled 10 patients with LOGG (7 LOTS, 3 LOSD) who underwent a neurological assessment battery and 7 age-matched controls. Structural MRI and MRS were performed on a 3 T scanner. Structural volumes were obtained from FreeSurfer and normalized by total intracranial volume. Quantified metabolites included N-acetylaspartate (NAA), choline (Cho), myo-inositol (mI), creatine (Cr), and combined glutamate-glutamine (Glx). Metabolic concentrations were corrected for partial volume effects. RESULTS: Structural analyses revealed significant cerebellar atrophy in the LOGG cohort, which was primarily driven by LOTS patients. NAA was lower and mI higher in LOGG, but this was also significantly driven by the LOTS patients. Clinical ataxia deficits (via the Scale for the Assessment and Rating of Ataxia) were associated with neuronal injury (via NAA), neuroinflammation (via mI), and volumetric atrophy in the cerebellum. INTERPRETATION: The decrease of NAA in the cerebellum suggests that, in addition to cerebellar atrophy, there is ongoing impaired neuronal function and/or loss, while an increase in mI indicates possible neuroinflammation in LOGG (more so within the LOTS subvariant). Quantifying cerebellar atrophy in relation to neurometabolic differences in LOGG may lead to improvements in assessing disease severity, progression, and pharmacological efficacy. Lastly, additional neuroimaging studies in LOGG are required to contrast LOTS and LOSD more accurately.


Gangliosidoses, GM2/diagnostic imaging , Gangliosidoses, GM2/physiopathology , Late Onset Disorders/diagnostic imaging , Late Onset Disorders/physiopathology , Magnetic Resonance Imaging/methods , Spectrum Analysis/methods , Adult , Cerebellum/diagnostic imaging , Cerebellum/pathology , Cohort Studies , Female , Humans , Longitudinal Studies , Male , Middle Aged , Parietal Lobe/diagnostic imaging , Parietal Lobe/pathology , Sandhoff Disease/diagnostic imaging , Sandhoff Disease/physiopathology , Tay-Sachs Disease/diagnostic imaging , Tay-Sachs Disease/physiopathology , Thalamus/diagnostic imaging , Thalamus/pathology , Young Adult
3.
Neurology ; 94(7): e705-e717, 2020 02 18.
Article En | MEDLINE | ID: mdl-31964693

OBJECTIVE: A cross-sectional study was performed to evaluate whether quantitative oculomotor measures correlate with disease severity in late-onset GM2 gangliosidosis (LOGG) and assess cognition and sleep as potential early nonmotor features. METHODS: Ten patients with LOGG underwent quantitative oculomotor recordings, including measurements of the angular vestibulo-ocular reflex (VOR), with results compared to age- and sex-matched controls. Disease severity was assessed by ataxia rating scales. Cognitive/neuropsychiatric features were assessed by the cerebellar cognitive affective syndrome (CCAS) scale, Cerebellar Neuropsychiatric Rating Scale, and sleep quality evaluated using subjective sleep scales. RESULTS: Oculomotor abnormalities were found in all participants, including 3/10 with clinically normal eye movements. Abnormalities involved impaired saccadic accuracy (5/10), abnormal vertical (8/10) and horizontal (4/10) pursuit, reduced optokinetic nystagmus (OKN) responses (7/10), low VOR gain (10/10), and impaired VOR cancellation (2/10). Compared to controls, the LOGG group showed significant differences in saccade, VOR, OKN, and visually enhanced VOR gains. Severity of saccadic dysmetria, OKN, and VOR fixation-suppression impairments correlated with ataxia scales (p < 0.05). Nine out of ten patients with LOGG had evidence of the CCAS (5/10 definite, 2/10 probable, 2/10 possible). Excessive daytime sleepiness was present in 4/10 and 8/10 had poor subjective sleep quality. CONCLUSIONS: Cerebellar oculomotor abnormalities were present in all patients with LOGG, including those with normal clinical oculomotor examinations. Saccade accuracy (dorsal cerebellar vermis localization), fixation suppression, and OKN gain (cerebellar flocculus/paraflocculus localization) correlated with disease severity, suggesting that quantitative oculomotor measurements could be used to track disease progression. We found evidence of the CCAS, suggesting that cerebellar dysfunction may explain the cognitive disorder in LOGG. Sleep impairments were prevalent and require further study.


Eye Movements , Gangliosidoses, GM2/diagnosis , Adult , Brain/diagnostic imaging , Cognition , Cohort Studies , Cross-Sectional Studies , Female , Gangliosidoses, GM2/physiopathology , Humans , Male , Middle Aged , Ocular Motility Disorders/diagnosis , Ocular Motility Disorders/etiology , Ocular Motility Disorders/physiopathology , Psychiatric Status Rating Scales , Severity of Illness Index , Sleep , Sleep Wake Disorders/diagnosis , Sleep Wake Disorders/etiology , Sleep Wake Disorders/physiopathology
...