Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Cladistics ; 24(6): 993-1005, 2008 Dec.
Article in English | MEDLINE | ID: mdl-34892879

ABSTRACT

A cladistic analysis of embiopterans, based on 157 species (representing 70% of the known genera) and 186 morphological characters, is presented, as well as a molecular analysis for 22 taxa using genes encoding 16S, 18S and 28S rDNA and COI. Species of all known families are included, except Andesembiidae Ross (specimens of which are in a private collection). The evidence presented supports the monophyly of four of the families (Australembiidae, Oligotomidae, Teratembiidae, and Anisembiidae). Notoligotomidae is paraphyletic and included within the Afro-neotropical family Archembiidae (which is also paraphyletic). The genera Embia, Cleomia, Macrembia, and Dihybocercus (Embiidae) form, together with Australembiidae, a group strongly supported by morphology; the position of the remaining genera of Embiidae has two quite different resolutions. Almost 80% of the genera of Anisembiidae recently described appear as either paraphyletic or polyphyletic. Contrary to the opinion of other specialists, the major groups as well as the monophyly of some families are supported by features which have been ignored in classical approaches to the systematics of Embioptera, such as the ovipositor and cephalic and leg structures, characters with an almost perfect fit.

2.
Nature ; 443(7110): 407, 2006 Sep 28.
Article in English | MEDLINE | ID: mdl-17006505

ABSTRACT

An unsuspected attachment mechanism may help these huge spiders to avoid catastrophic falls. Spiders spin silk from specialized structures known as abdominal spinnerets--a defining feature of the creatures--and this is deployed to capture prey, protect themselves, reproduce and disperse. Here we show that zebra tarantulas (Aphonopelma seemanni) from Costa Rica also secrete silk from their feet to provide adhesion during locomotion, enabling these spiders to cling to smooth vertical surfaces. Our discovery that silk is produced by the feet provides a new perspective on the origin and diversification of spider silk.


Subject(s)
Extremities/physiology , Silk/chemistry , Spiders/chemistry , Spiders/physiology , Adhesiveness , Animals , Costa Rica
SELECTION OF CITATIONS
SEARCH DETAIL