Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 694
Filter
1.
PeerJ ; 12: e18119, 2024.
Article in English | MEDLINE | ID: mdl-39351367

ABSTRACT

Atmospheric particulate matter (PM) pollution has become a major environmental risk, and green plants can mitigate air pollution by regulating their enzymatic activity, osmoregulatory substances, photosynthetic pigments, and other biochemical characteristics. The present investigation aims to evaluate the mitigation potential of five common evergreen tree species (Photinia serrulata, Ligustrum lucidum, Eriobotrya japonica, Euonymus japonicus, Pittosporum tobira) against air pollution and to assess the effect of dust retention on plant physiological functions exposed to three different pollution levels (road, campus, and park). The results found that the amount of dust retained per unit leaf area of the plants was proportional to the mass concentration of atmospheric particulate matter in the environment, and that dust accumulation was higher on the road and campus than in the park. There were significant differences in dust retention among the five tree species, with the highest leaf dust accumulation observed for E. japonica (5.45 g·m-2), and the lowest for P. tobira (1.53 g·m-2). In addition, the increase in PM adsorption by different plants was uneven with increasing pollution levels, with significant decreases in chlorophyll content, photosynthetic and transpiration rate. From a physiological perspective, P. tobira exhibited greater potential to respond to PM pollution. Biochemical indicators suggested that PM pollution caused changes in plant protective enzyme activities, with a decrease in superoxide dismutase (SOD) and peroxidase (POD) activities, as well as promoting membrane lipid peroxidation, and appropriate stress also enables plants to counteract oxidative damage. In particular, PM exposure also induced stomatal constriction. Overall, PM retention was significantly associated with physiological and photosynthetic traits. In conclusion, our study contributes to the understanding of the effects of PM on plant physiology. Furthermore, it also provides insights into the selection of plants that are tolerant to PM pollution.


Subject(s)
Air Pollutants , Particulate Matter , Photosynthesis , Particulate Matter/adverse effects , Particulate Matter/toxicity , China , Photosynthesis/drug effects , Air Pollutants/adverse effects , Air Pollutants/analysis , Chlorophyll/metabolism , Trees/drug effects , Trees/metabolism , Ligustrum/chemistry , Euonymus/metabolism , Euonymus/drug effects , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Leaves/chemistry , Dust/analysis , Air Pollution/adverse effects
2.
Ecotoxicol Environ Saf ; 285: 117121, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39357380

ABSTRACT

BACKGROUND: Genetic factors and environmental exposures, including air pollution, contribute to the risk of depression and anxiety. While the association between air pollution and depression and anxiety has been established in the UK Biobank, there has been limited research exploring this relationship from a genetic perspective. METHODS: Based on individual genotypic and phenotypic data from a cohort of 104,385 participants in the UK Biobank, a polygenic risk score for depression and anxiety was constructed to explore the joint effects of nitric oxide (NO), nitrogen dioxide (NO2), particulate matter (PM) with a diameter of ⩽2.5 µm (PM2.5) and 2.5-10 µm (PMcoarse) with depression and anxiety by linear and logistic regression models. Subsequently, a genome-wide gene-environmental interaction study (GWEIS) was performed using PLINK 2.0 to identify the genes interacting with air pollution for depression and anxiety. RESULTS: A substantial risk of depression and anxiety development was detected in participants exposed to the high air pollution concomitantly with high genetic risk. GWEIS identified 166, 23, 18, and 164 significant candidate loci interacting with NO, NO2, PM2.5, and PMcoarse for Patient Health Questionnaire-9 (PHQ-9) score, and detected 44, 10, 10, and 114 candidate loci associated with NO, NO2, PM2.5, and PMcoarse for General Anxiety Disorder (GAD-7) score, respectively. And some significant genes overlapped among four air pollutants, like TSN (rs184699498, PNO2 = 3.47 × 10-9; rs139212326, PPM2.5 = 1.51 × 10-8) and HSP90AB7P(rs150987455, PNO2 = 1.63 × 10-11; rs150987455, PPM2.5 = 7.64 × 10-11), which were common genes affecting PHQ-9 score for both NO2 and PM2.5. CONCLUSION: Our study identified the joint effects of air pollution with genetic susceptibility on the risk of depression and anxiety, and provided several novel candidate genes for the interaction, contributing to an understanding of the genetic architecture of depression and anxiety.

3.
Expert Opin Drug Saf ; : 1-10, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39377277

ABSTRACT

BACKGROUND: Anti-herpesvirus drug safety profiles have not been systematically compared. Understanding variations in adverse events (AEs) could provide reference for rational clinical use. METHODS: We collected data on acyclovir, ganciclovir, valaciclovir, and foscarnet from the FDA Adverse Event Reporting System (FAERS) database from Q1 2004 to Q3 2023. Disproportionality analyses were conducted to evaluate the risk of AEs. RESULTS: All drugs exhibited significant associations with hematotoxicity, with ganciclovir and foscarnet being more myelosuppressive. The correlation with renal impairment ranked as follows: foscarnet, ganciclovir, valaciclovir, and acyclovir (ROR = 16.72, 7.06, 3.51, and 2.02, respectively). Regarding hepatotoxicity, ganciclovir was associated with acute-on-chronic liver failure (ROR = 52.83), and foscarnet was associated with fulminant hepatitis (ROR = 49.91). In the nervous system, acyclovir showed the highest intensity of neurotoxicity (ROR = 14.95). Valaciclovir ranked first in toxic encephalopathy (ROR = 64.70). Foscarnet showed the highest intensity of status epilepticus (ROR = 6.45). Besides, acyclovir showed the strongest association with severe cutaneous adverse reactions (SCARs). CONCLUSIONS: Our study revealed differences in safety profiles of four anti-herpesvirus medications. Ganciclovir exhibited the highest risk of hematotoxicity but appeared relatively safe in seizures and SCARs. Foscarnet was more likely to induce nephrotoxicity, seizures, and electrolyte imbalances than others. Acyclovir and valaciclovir were strongly associated with plasmacytosis, neurotoxicity, and SCARs.

4.
Sci Total Environ ; 954: 176660, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39362540

ABSTRACT

Nitrogen oxides (NOx = NO + NO2) have essential impacts on global climate and the environment, making it essential to study the contribution of wetland-generated NOx to environmental problems. With exogenous nitrogen input from anthropogenic activities, wetland sediments become active emission hotspots for NOx. In this study, we conducted field experiments in a typical salt marsh wetland to measure nitric oxide (NO, the primary component of NOx from sediments) exchange fluxes in both mudflat and vegetated sediments. We found that NO fluxes in vegetated sediments (0.40 ± 0.15 × 10-12 kg N m-2 s-1) were relatively higher than in mudflat sediments (-1.31 ± 1.39 × 10-12 kg N m-2 s-1), with this difference occurring only during the vegetation-dying season (autumn). Correlations between sediment NO fluxes and environmental parameters revealed that NO flux variation during the observation period was primarily influenced by sediment respiration, temperature, water content, and substrate availability. However, the influence of these factors on NO fluxes differed between mudflat and vegetated sediments. In-situ data analysis also suggested that tidal horizontal migration, which affects sediment substrate and salinity, may regulate sediment NO emissions. Furthermore, in-situ incubations with nitrogen addition (ammonia, nitrite, and nitrate) were conducted to study the response of sediment NO emissions to exogenous nitrogen. We observed that nitrogen addition caused a 259.7 % increase in NO emissions from vegetated sediments compared to the control during the effective period of nitrogen addition (days 1-3). However, although nitrogen addition markedly stimulated sediment NO emissions, the overall NO production capacity constrained the extent of this increase.

5.
Ecotoxicol Environ Saf ; 285: 117148, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39369662

ABSTRACT

BACKGROUND: Kashin-Beck disease (KBD) is an endemic osteoarthropathy characterized by excessive chondrocytes apoptosis. T-2 toxin exposure has been proved to be its etiology. Connective tissue growth factor (CTGF) exerts a profound influence on cartilage growth and metabolism. We investigated the potential role of CTGF in KBD development and examined CTGF alterations under T-2 toxin stimulation. METHODS: The levels of CTGF and chondrocyte apoptosis-related markers in cartilage and primary chondrocytes from KBD and control groups were measured using qRT-PCR, Western blotting, immunohistochemistry, and immunofluorescence. We analyzed expression changes of these genes in response to T-2 toxin. Apoptosis rates of chondrocytes induced by T-2 toxin were measured by flow cytometry and TUNEL assay. The active pharmaceutical ingredient targeting CTGF was screened through Comparative Toxicogenomics Database, and molecular docking was performed using AutoDock Tools. RESULTS: The CTGF levels in KBD cartilage and chondrocytes were significantly elevated and positively associated with the levels of apoptosis-related genes. T-2 toxin exposure increased CTGF and apoptosis-related gene levels in chondrocytes, with apoptosis rates rising alongside T-2 toxin concentration. Curcumin was identified as targeting CTGF and exhibited effective binding. It could down-regulate CTGF, apoptosis-related genes, such as Cleaved caspase 3 and BAX, and also significantly reduce apoptosis rate in chondrocytes treated with T-2 toxin. CONCLUSION: CTGF plays a crucial role in the development of KBD. Curcumin has shown potential in inhibiting CTGF levels and reducing chondrocyte apoptosis, highlighting its promise as a therapeutic agent for preventing cartilage damage in KBD. Our findings provided valuable insights into the pathogenesis of KBD and could promote the development of novel therapeutic strategies for this debilitating disease.

6.
BMC Geriatr ; 24(1): 790, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39342216

ABSTRACT

BACKGROUND: Myceliophthora heterothallica belonging to Myceliophthora is considered as an environmental fungus and has not been reported to be pathogenic or colonizing in recent literature. The present case firstly reports a ventilation-associated pneumonia caused by Myceliophthora heterothallica among the aged adult. CASE PRESENTATION: A 67-years-old Asian female patient suffering from a sudden disturbance of consciousness for 3 h was admitted to our hospital. Cardiac arrest occurred during emergency transport, and sinus rhythm was restored after cardiopulmonary resuscitation. Invasive mechanical ventilation was given to this patient for respiratory failure. After mechanical ventilation, the lung CT images showed multiple cuneiform nodules arranging subpleural accompanying with ground-glass opacity. On the 5th day of mechanical ventilation, Myceliophthora heterothallica was cultured from endotracheal aspirates. Two methods, namely automatic microbial identification system and internal transcribed spacer sequencing were employed to identify this fungus. The present case firstly uncovered the colonization ability and pathogenicity of Myceliophthora heterothallica in the respiratory tract. After 28d of treatment with piperacillin-tazobactam, this patient weaned from the ventilator and recovered from consciousness with lung infection disappearance. CONCLUSIONS: This is the first case report of ventilation-associated pneumonia in the aged patient caused by Myceliophthora heterothallica. This current case is worth for the clinical diagnosis and treatment of Myceliophthora heterothallica infection, and also enriches new pathogenic species found of thermothelomyces species.


Subject(s)
Pneumonia, Ventilator-Associated , Sordariales , Aged , Female , Humans , Pneumonia, Ventilator-Associated/microbiology , Pneumonia, Ventilator-Associated/diagnosis , Sordariales/pathogenicity , Opportunistic Infections/diagnosis , Opportunistic Infections/microbiology
7.
Pestic Biochem Physiol ; 204: 106092, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39277404

ABSTRACT

Rice panicle blight (RPB) caused by various Fusarium spp. is an emerging disease in the major rice-growing regions of China. Epidemics of this disease cause significant yield loss and reduce grain quality by contaminating panicles with different Fusarium toxins. However, there is currently no registered fungicide for the control of RPB in China. The 14α-demethylation inhibitor (DMI) fungicide metconazole has been shown to be effective against several Fusarium spp. that cause wheat head blight, wheat crown rot and maize ear rot. In this study, we investigated the specific activity of metconazole against six Fusarium spp. that cause RPB. Metconazole significantly inhibited mycelial growth, conidium formation, germination, germ tube elongation and major toxin production in Fusarium strains collected from major rice-growing regions in China, as well as disrupting cell membrane function by inhibiting ergosterol biosynthesis. Greenhouse experiments indicated a significant reduction in blight occurrence and toxin accumulation in rice panicles treated with metconazole. Overall, our study demonstrated the potential of metconazole for managing RPB and toxin contamination, as well as providing insight into its bioactivities and modes of action of metconazole against distinct Fusarium spp.


Subject(s)
Fungicides, Industrial , Fusarium , Oryza , Plant Diseases , Fusarium/drug effects , Fusarium/metabolism , Oryza/microbiology , Fungicides, Industrial/pharmacology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Mycotoxins/biosynthesis , Triazoles/pharmacology , Trichothecenes/metabolism
8.
Front Microbiol ; 15: 1417651, 2024.
Article in English | MEDLINE | ID: mdl-39224213

ABSTRACT

Phytoplankton has been used as a paradigm for studies of coexistence of species since the publication of the "paradox of the plankton." Although there are a wealth of studies about phytoplankton assemblages of lakes, reservoirs and rivers, our knowledge about phytoplankton biodiversity and its underlying mechanisms in mountain headwater stream ecosystems is limited, especially across regional scales with broad environmental gradients. In this study, we collected 144 phytoplankton samples from the Xijiang headwater streams of the Pearl River across low altitude (< 1,000 m) located in Guangxi province, intermediate altitude (1,000 m < altitude <2,000 m) in Guizhou province and high altitude (> 2,000 m) in Yunnan province of China. Our study revealed high phytoplankton diversity in these streams. Freshwater phytoplankton, including cyanobacteria, Bacillariophyta, Chlorophyta, Rhodophyta, Chrysophyta, Euglenophyta, Glaucophyta, Phaeophyta and Cryptophyta, were all detected. However, phytoplankton alpha diversity exhibited a monotonic decreasing relationship with increasing altitude. High altitudes amplified the "isolated island" effect of headwater streams on phytoplankton assemblages, which were characterized by lower homogeneous selection and higher dispersal limitation. Variability and network vulnerability of phytoplankton assemblages increased with increasing altitudes. Our findings demonstrated diversity, variability and co-occurrence patterns of phytoplankton assemblages linked to environmental factors co-varying with altitude across regional scales.

9.
ACS Appl Mater Interfaces ; 16(38): 51669-51678, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39268841

ABSTRACT

Integrating biomechanical and biomolecular sensing mechanisms into wearable devices is a formidable challenge and key to acquiring personalized health management. To address this, we have developed an innovative multifunctional sensor enabled by plasma functionalized silk fabric, which possesses multimodal sensing capabilities for biomechanics and biomolecules. A seed-mediated in situ growth method was employed to coat silver nanoparticles (AgNPs) onto silk fibers, resulting in silk fibers functionalized with AgNPs (SFs@Ag) that exhibit both piezoresistive response and localized surface plasmon resonance effects. The SFs@Ag membrane enables accurate detection of mechanical pressure and specific biomolecules during wearable sensing, offering a versatile solution for comprehensive personalized health monitoring. Additionally, a machine learning algorithm has been established to specifically recognize muscle strain signals, potentially extending to the diagnosis and monitoring of neuromuscular disorders such as amyotrophic lateral sclerosis (ALS). Unlike electromyography, which detects large muscles in clinical medicine, sensing data for tiny muscles enhance our understanding of muscle coordination using the SFs@Ag sensor. This detection model provides feasibility for the early detection and prevention of neuromuscular diseases. Beyond muscle stress and strain sensing, biomolecular detection is a critical addition to achieving effective health management. In this study, we developed highly sensitive surface-enhanced Raman scattering (SERS) detection for wearable health monitoring. Finite-difference time-domain numerical simulations ware utilized to analyze the efficacy of the SFs@Ag sensor for wearable SERS sensing of biomolecules. Based on the specific SERS spectra, automatic extraction of signals of sweat molecules was also achieved. In summary, the SFs@Ag sensor bridges the gap between biomechanical and biomolecular sensing in wearable applications, providing significant value for personalized health management.


Subject(s)
Metal Nanoparticles , Silk , Silver , Wearable Electronic Devices , Silver/chemistry , Silk/chemistry , Humans , Metal Nanoparticles/chemistry , Biomechanical Phenomena , Textiles , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Spectrum Analysis, Raman
10.
Acta Chim Slov ; 71(3): 509-518, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39324322

ABSTRACT

The biosynthesis of fatty acids constitutes a critical metabolic pathway in bacterial organisms. Prior investigations have highlighted the synthesis of antimicrobial compounds anchored in the benzodioxepin scaffold, noted for their pronounced antibacterial properties. Leveraging this foundational knowledge, the current research endeavors to meticulously engineer and synthesize a series of eight innovative benzodioxepin amide-biphenyl derivatives. This achievement was realized through the sophisticated optimization of synthetic methodologies. The scope of this study extends to a rigorous evaluation of the antibacterial prowess and biocompatibility of the aforementioned novel derivatives. Notably, Compound E4 emerged as a supremely potent antimicrobial agent. A detailed elucidation of the crystalline architecture of Compound E4 was conducted, alongside a thorough docking study to explore its interactions with the FabH enzyme.


Subject(s)
Amides , Anti-Bacterial Agents , Biphenyl Compounds , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Amides/pharmacology , Amides/chemistry , Amides/chemical synthesis , Biphenyl Compounds/chemistry , Molecular Docking Simulation , Benzodioxoles/pharmacology , Benzodioxoles/chemical synthesis , Benzodioxoles/chemistry , Structure-Activity Relationship , Staphylococcus aureus/drug effects , Molecular Structure
12.
Sci Rep ; 14(1): 19727, 2024 08 25.
Article in English | MEDLINE | ID: mdl-39183210

ABSTRACT

This study addresses the growing anxiety and depression among Chinese university students by evaluating and ranking music education strategies to alleviate these issues. We integrates Fuzzy Analytic Hierarchy Process (FAHP) and Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). FAHP was utilized to determine the weight of factors such as academic pressures, social relationships, and cultural norms, while fuzzy TOPSIS ranked the effectiveness of music education interventions based on these weights. The results revealed that 'Mental health stigma' and 'Academic Pressures and Rigidity' are among the highest weighted factors, significantly impacting student anxiety. 'Music Appreciation and Music-Based Self-Care' emerged as the most effective strategy. These results highlight the importance of direct involvement in music-related activities for improving student mental health.


Subject(s)
Mental Health , Music , Students , Humans , Students/psychology , Universities , Male , Music/psychology , Female , China , Young Adult , Fuzzy Logic , Anxiety/therapy , Anxiety/prevention & control , Depression/therapy , Adult
13.
Transl Psychiatry ; 14(1): 323, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107272

ABSTRACT

This study investigates the cellular origin and tissue heterogeneity in bipolar disorder (BD) by integrating multiomics data. Four distinct datasets were employed, including single-cell RNA sequencing (scRNA-seq) data (embryonic and fetal brain, n = 8, 1,266 cells), BD Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) data (adult brain, n = 210), BD bulk RNA-seq data (adult brain, n = 314), and BD genome-wide association study (GWAS) summary data (n = 413,466). The integration of scRNA-seq data with multiomics data relevant to BD was accomplished using the single-cell disease relevance score (scDRS) algorithm. We have identified a novel brain cell cluster named ADCY1, which exhibits distinct genetic characteristics. From a high-resolution genetic perspective, glial cells emerge as the primary cytopathology associated with BD. Specifically, astrocytes were significantly related to BD at the RNA-seq level, while microglia showed a strong association with BD across multiple panels, including the transcriptome-wide association study (TWAS), ATAC-seq, and RNA-seq. Additionally, oligodendrocyte precursor cells displayed a significant association with BD in both ATAC-seq and RNA-seq panel. Notably, our investigation of brain regions affected by BD revealed significant associations between BD and all three types of glial cells in the dorsolateral prefrontal cortex (DLPFC). Through comprehensive analyses, we identified several BD-associated genes, including CRMP1, SYT4, UCHL1, and ZBTB18. In conclusion, our findings suggest that glial cells, particularly in specific brain regions such as the DLPFC, may play a significant role in the pathogenesis of BD. The integration of multiomics data has provided valuable insights into the etiology of BD, shedding light on potential mechanisms underlying this complex psychiatric disorder.


Subject(s)
Bipolar Disorder , Brain , Genome-Wide Association Study , Single-Cell Analysis , Bipolar Disorder/genetics , Bipolar Disorder/pathology , Humans , Brain/pathology , Brain/metabolism , Astrocytes/metabolism , Microglia/metabolism , Microglia/pathology , Sequence Analysis, RNA , Adult , Transcriptome , Multiomics
14.
Article in English | MEDLINE | ID: mdl-39112826

ABSTRACT

ALK/HDACs dual target inhibitor (PT-54) was a 2,4-pyrimidinediamine derivative synthesized based on the pharmacophore merged strategy that inhibits both anaplastic lymphoma kinase (ALK) and histone deacetylases (HDACs), which has demonstrated significant efficacy in treating multiple cancers. However, its poor solubility in water limited its clinical application. In this study, we prepared PT-54 liposomes (PT-54-LPs) by the membrane hydration method to overcome this defect. The encapsulation efficiency (EE) and particle size were used as evaluation indicators to explore the preparation conditions of PT-54-LPs. The morphology, particle size, EE, drug loading content (DLC), drug release properties, and stability of PT-54-LPs were further investigated. In vitro drug release studies showed that PT-54-LPs exhibited significant slow-release properties compared with free PT-54. PT-54-LPs also showed better tumor inhibitory effects than free PT-54 without significant adverse effects. These results suggested that PT-54-LPs displayed sustained drug release and significantly improved the tumor selectivity of PT-54. Thus, PT-54-LPs showed significant promise in enhancing anticancer efficiency.

15.
EBioMedicine ; 107: 105286, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39168091

ABSTRACT

BACKGROUND: Genome-wide association studies (GWAS) have revealed many brain disorder-associated SNPs residing in the noncoding genome, rendering it a challenge to decipher the underlying pathogenic mechanisms. METHODS: Here, we present an unsupervised Bayesian framework to identify disease-associated genes by integrating risk SNPs with long-range chromatin interactions (iGOAT), including SNP-SNP interactions extracted from ∼500,000 patients and controls from the UK Biobank, and enhancer-promoter interactions derived from multiple brain cell types at different developmental stages. FINDINGS: The application of iGOAT to three psychiatric disorders and three neurodegenerative/neurological diseases predicted sets of high-risk (HRGs) and low-risk (LRGs) genes for each disorder. The HRGs were enriched in drug targets, and exhibited higher expression during prenatal brain developmental stages than postnatal stages, indicating their potential to affect brain development at an early stage. The HRGs associated with Alzheimer's disease were found to share genetic architecture with schizophrenia, bipolar disorder and major depressive disorder according to gene co-expression module analysis and rare variants analysis. Comparisons of this method to the eQTL-based method, the TWAS-based method, and the gene-level GWAS method indicated that the genes identified by our method are more enriched in known brain disorder-related genes, and exhibited higher precision. Finally, the method predicted 205 risk genes not previously reported to be associated with any brain disorder, of which one top-risk gene, MLH1, was experimentally validated as being schizophrenia-associated. INTERPRETATION: iGOAT can successfully leverage epigenomic data, phenotype-genotype associations, and protein-protein interactions to advance our understanding of brain disorders, thereby facilitating the development of new therapeutic approaches. FUNDING: The work was funded by the National Key Research and Development Program of China (2024YFF1204902), the Natural Science Foundation of China (82371482), Guangzhou Science and Technology Research Plan (2023A03J0659) and Natural Science Foundation of Guangdong (2024A1515011363).


Subject(s)
Bayes Theorem , Brain Diseases , Genetic Predisposition to Disease , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Humans , Brain Diseases/genetics , Genomics/methods , Computational Biology/methods , Quantitative Trait Loci
16.
Adv Sci (Weinh) ; 11(33): e2401869, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38959395

ABSTRACT

Ionic conductive hydrogels (ICHs) have recently gained prominence in biosensing, indicating their potential to redefine future biomedical applications. However, the integration of these hydrogels into sensor technologies and their long-term efficacy in practical applications pose substantial challenges, including a synergy of features, such as mechanical adaptability, conductive sensitivity, self-adhesion, self-regeneration, and microbial resistance. To address these challenges, this study introduces a novel hydrogel system using an imidazolium salt with a ureido backbone (UL) as the primary monomer. Fabricated via a straightforward one-pot copolymerization process that includes betaine sulfonate methacrylate (SBMA) and acrylamide (AM), the hydrogel demonstrates multifunctional properties. The innovation of this hydrogel is attributed to its robust mechanical attributes, outstanding strain responsiveness, effective water retention, and advanced self-regenerative and healing capabilities, which collectively lead to its superior performance in various applications. Moreover, this hydrogel  exhibited broad-spectrum antibacterial activity. Its potential for biomechanical monitoring, especially in tandem with contact and noncontact electrocardiogram (ECG) devices, represents a noteworthy advancement in precise real-time cardiac monitoring in clinical environments. In addition, the conductive properties of the hydrogel make it an ideal substrate for electrophoretic patches aimed at treating infected wounds and consequently enhancing the healing process.


Subject(s)
Biosensing Techniques , Hydrogels , Ionic Liquids , Hydrogels/chemistry , Biosensing Techniques/methods , Ionic Liquids/chemistry , Electric Conductivity , Anti-Bacterial Agents/pharmacology
17.
Appl Environ Microbiol ; 90(7): e0074124, 2024 07 24.
Article in English | MEDLINE | ID: mdl-38953660

ABSTRACT

To cope with a high-salinity environment, haloarchaea generally employ the twin-arginine translocation (Tat) pathway to transport secretory proteins across the cytoplasm membrane in a folded state, including Tat-dependent extracellular subtilases (halolysins) capable of autocatalytic activation. Some halolysins, such as SptA of Natrinema gari J7-2, are produced at late-log phase to prevent premature enzyme activation and proteolytic damage of cellular proteins in haloarchaea; however, the regulation mechanism for growth phase-dependent expression of halolysins remains largely unknown. In this study, a DNA-protein pull-down assay was performed to identify the proteins binding to the 5'-flanking sequence of sptA encoding halolysin SptA in strain J7-2, revealing a TrmBL2-like transcription factor (NgTrmBL2). The ΔtrmBL2 mutant of strain J7-2 showed a sharp decrease in the production of SptA, suggesting that NgTrmBL2 positively regulates sptA expression. The purified recombinant NgTrmBL2 mainly existed as a dimer although monomeric and higher-order oligomeric forms were detected by native-PAGE analysis. The results of electrophoretic mobility shift assays (EMSAs) showed that NgTrmBL2 binds to the 5'-flanking sequence of sptA in a non-specific and concentration-dependent manner and exhibits an increased DNA-binding affinity with the increase in KCl concentration. Moreover, we found that a distal cis-regulatory element embedded in the neighboring upstream gene negatively regulates trmBL2 expression and thus participates in the growth phase-dependent biosynthesis of halolysin SptA. IMPORTANCE: Extracellular proteases play important roles in nutrient metabolism, processing of functional proteins, and antagonism of haloarchaea, but no transcription factor involved in regulating the expression of haloaechaeal extracellular protease has been reported yet. Here we report that a TrmBL2-like transcription factor (NgTrmBL2) mediates the growth phase-dependent expression of an extracellular protease, halolysin SptA, of haloarchaeon Natrinema gari J7-2. In contrast to its hyperthermophilic archaeal homologs, which are generally considered to be global transcription repressors, NgTrmBL2 functions as a positive regulator for sptA expression. This study provides new clues about the transcriptional regulation mechanism of extracellular protease in haloarchaea and the functional diversity of archaeal TrmBL2.


Subject(s)
Halobacteriaceae , Transcription Factors , Transcription Factors/metabolism , Transcription Factors/genetics , Halobacteriaceae/genetics , Halobacteriaceae/metabolism , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Gene Expression Regulation, Archaeal
18.
Front Plant Sci ; 15: 1418480, 2024.
Article in English | MEDLINE | ID: mdl-38988635

ABSTRACT

Quisqualis fructus (QF) is a traditional Chinese medicine (TCM) that it has a long history in the therapeutic field of killing parasites, eliminating accumulation, and stopping diarrhea. However, the therapeutic material basis of QF is remaining ambiguous nowadays. The geographical origin differences of QF are also usually ignored in the process of medication. In this study, the alcohol-aqueous soluble constituents in QF from different origins were systematically characterized and accurately measured by ultra-high performance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and high-performance liquid chromatography (HPLC) respectively. Chemometric analysis was performed for origin differentiation and screening of potential quality marker (Q-marker). Finally, A total of 106 constituents were tentatively characterized in positive and negative ion modes, including 29 fatty acids, 26 organic acids, 11 amino acids and derivatives, 10 glycosides, 9 alkaloids and derivatives, and 21 other constituents. QF from different origins were effectively distinguished and 16 constituents were selected as the potential Q-markers subsequently. Four representative components (trigonelline, adenosine, ellagic acid, and 3,3'-di-O-methylellagic acid) in QF samples were simultaneously determined. HPLC fingerprint analysis indicated that the similarity between 16 batches of QF was in the range of 0.870-0.999. The above results provide some insights for the research on the pharmacodynamic constituents, quality control, and geographical discrimination of QF.

19.
Environ Pollut ; 360: 124619, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39067738

ABSTRACT

Biochar (BC) has been proven effective in promoting the production of safety food in cadmium (Cd)-polluted soil and the impact can be further enhanced through interaction with compost (CM). However, there existed unclear impacts of biochar with varying particle sizes in conjunction with compost on microbiome composition, rhizosphere functions, and soil health. Hence, in this study, two bulk-biochar derived from wood chips and pig manure were fabricated into nano-biochar using a ball-milling method. Subsequently, in a field experiment, the root-associated bacterial community and microbial functions of lettuce were evaluated in respond to Cd-contaminated soil remediated with nano/bulk-BCCM. The results showed that compared to bulk-BCCM, nano-BCCM significantly reduced the Cd concentration in the edible part of lettuce and the available Cd in the soil. Both nano-BCCM and bulk-BCCM strongly influenced the composition of bacterial communities in the four root-associated niches, and enhanced rhizosphere functions involved in nitrogen, phosphorus, and carbon cycling, as well as the relative abundance and biodiversity of keystone modules in rhizosphere soil. Furthermore, soil quality index analysis indicated that nano-BCCM exhibited greater potential than bulk-BCCM in maintaining soil health. The data revealed that nano-BCCM could regulate the Cd concentration in lettuce shoot by promoting microbial biodiversity of keystone modules in soil-root continuum and rhizosphere bacterial functions. These findings suggest that nano-biochar compost associations can be a superior strategy for enhancing microbial functions, maintaining soil health, and ensuring crop production safety in the Cd-contaminated soil compared to the mix of bulk-biochar and compost.


Subject(s)
Bacteria , Cadmium , Charcoal , Composting , Rhizosphere , Soil Microbiology , Soil Pollutants , Soil , Cadmium/analysis , Soil Pollutants/analysis , Soil/chemistry , Charcoal/chemistry , Bacteria/metabolism , Microbiota , Plant Roots/microbiology , Lactuca/microbiology , Manure
20.
MedComm (2020) ; 5(8): e660, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39015555

ABSTRACT

Exosomes are nanoscale vesicles of cellular origin. One of the main characteristics of exosomes is their ability to carry a wide range of biomolecules from their parental cells, which are important mediators of intercellular communication and play an important role in physiological and pathological processes. Exosomes have the advantages of biocompatibility, low immunogenicity, and wide biodistribution. As researchers' understanding of exosomes has increased, various strategies have been proposed for their use in diagnosing and treating diseases. Here, we provide an overview of the biogenesis and composition of exosomes, describe the relationship between exosomes and disease progression, and focus on the use of exosomes as biomarkers for early screening, disease monitoring, and guiding therapy in refractory diseases such as tumors and neurodegenerative diseases. We also summarize the current applications of exosomes, especially engineered exosomes, for efficient drug delivery, targeted therapies, gene therapies, and immune vaccines. Finally, the current challenges and potential research directions for the clinical application of exosomes are also discussed. In conclusion, exosomes, as an emerging molecule that can be used in the diagnosis and treatment of diseases, combined with multidisciplinary innovative solutions, will play an important role in clinical applications.

SELECTION OF CITATIONS
SEARCH DETAIL