Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.945
Filter
2.
Comput Methods Programs Biomed ; 254: 108270, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38878358

ABSTRACT

BACKGROUND AND OBJECTIVE: The implantation of ventricular assist devices (VADs) has become an important treatment option for patients with heart failure. Aortic valve insufficiency is a common complication caused by VADs implantation. Currently, there is very little quantitative research on the effects of transcatheter micro VADs or the intervention pumps on the aortic valves. METHODS: In this study, the multi-component arbitrary Lagrange-Eulerian method is used to perform fluid-structure interaction simulations of the aortic valve model with and without intervention pumps. The effects of intervention pumps implantation on the opening area of the aortic valves, the stress distribution, and the flow characteristics are quantitatively analyzed. Statistical results are consistent with clinical guidelines and experiments. RESULTS: The implantation of intervention pumps leads to the valve insufficiency and causes weak valve regurgitation. In the short-term treatment, the valve regurgitation is within a controllable range. The distribution and variation of stress on the leaflets are also affected by intervention pumps. The whirling flow in the flow direction affects the closing speed of the aortic valves and optimizes the stress distribution of the valves. In the models with whirling flow, the effects of intervention pumps implantation on valve motion and stress distribution differ from those without whirling flow. However, the valve insufficiency and valve regurgitation caused by intervention pumps still exist in the models with whirling flow. Conventional artificial bioprosthetic valves have limited effectiveness in treating the valve diseases caused by intervention pumps implantation. CONCLUSIONS: This study quantitatively investigates the impact of intervention pumps on the aortic valves, and investigates the effect of blood rotation on the valve behavior, which is a gap in previous research. We suggest that in the short-term treatment, the implantation of intervention pumps has limited impact on aortic valves, caution should be exercised against valve regurgitation issues caused by intervention pumps.

3.
PeerJ ; 12: e17453, 2024.
Article in English | MEDLINE | ID: mdl-38827294

ABSTRACT

Sown mixed grassland is rarely used for livestock raising and grazing; however, different forages can provide various nutrients for livestock, which may be beneficial to animal health and welfare. We established a sown mixed grassland and adopted a rotational grazing system, monitored the changes in aboveground biomass and sheep weights during the summer grazing period, measured the nutrients of forage by near-infrared spectroscopy, tested the contents of medium- and long-chain fatty acids by gas chromatography, and explored an efficient sheep fattening system that is suitable for agro-pastoral interlacing areas. The results showed that the maximum forage supply in a single grazing paddock was 4.6 kg DM/d, the highest dry matter intake (DMI) was 1.80 kg DM/ewe/d, the average daily weight gain (ADG) was 193.3 g, the DMI and ADG were significantly correlated (P < 0.05), and the average feed weight gain ratio (F/G) reached 8.02. The average crude protein and metabolizable energy intake by sheep were 286 g/ewe/d and 18.5 MJ/ewe/d respectively, and the n-6/n-3 ratio of polyunsaturated fatty acids in mutton was 2.84. The results indicated that the sheep fattening system had high feed conversion efficiency, could improve the yield and quality of sheep, and could be promoted in suitable regions.


Subject(s)
Animal Feed , Animal Husbandry , Grassland , Animals , Sheep , Animal Husbandry/methods , Animal Feed/analysis , Weight Gain/physiology , Biomass , Animal Nutritional Physiological Phenomena/physiology
4.
Matern Child Nutr ; : e13682, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925571

ABSTRACT

Exposure to certain heavy metals has been demonstrated to be associated with a higher risk of preterm birth (PTB). However, studies focused on the effects of other metal mixtures were limited. A nested case‒control study enrolling 94 PTB cases and 282 controls was conducted. Metallic elements were detected in maternal plasma collected in the first trimester using inductively coupled plasma‒mass spectrometry. The effect of maternal exposure on the risk of PTB was investigated using logistic regression, least absolute shrinkage and selection operator, restricted cubic spline (RCS), quantile g computation (QGC) and Bayesian kernel machine regression (BKMR). Vanadium (V) and arsenic (As) were positively associated with PTB risk in the logistic model, and V remains positively associated in the multi-exposure logistic model. QGC analysis determined V (69.42%) and nickel (Ni) (70.30%) as the maximum positive and negative contributors to the PTB risk, respectively. BKMR models further demonstrated a positive relationship between the exposure levels of the mixtures and PTB risk, and V was identified as the most important independent variable among the elements. RCS analysis showed an inverted U-shape effect of V and gestational age, and plasma V more than 2.18 µg/L was considered a risk factor for shortened gestation length. Exposure to metallic elements mixtures consisting of V, As, cobalt, Ni, chromium and manganese in the first trimester was associated with an increased risk of PTB, and V was considered the most important factor in the mixtures in promoting the incidence of PTB.

5.
Materials (Basel) ; 17(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38930216

ABSTRACT

Multi-beam microwave antennas have attracted enormous attention owing to their wide range of applications in communication systems. Here, we propose a broadband metamaterial-based multi-beam Luneburg lens-antenna with low polarization sensitivity. The lens is constructed from additively manufactured spherical layers, where the effective permittivity of the constituting elements is obtained by adjusting the ratio of dielectric material to air. Flexible microstrip patch antennas operating at different frequencies are used as primary feeds illuminating the lens to validate the radiation features of the lens-antenna system. The proposed Luneburg lens-antenna achieves ±72° beam scanning angle over a broad frequency range spanning from 2 GHz to 8 GHz and presents a gain between 15.3 dBi and 22 dBi, suggesting potential applications in microwave- and millimeter-wave mobile communications, radar detection and remote sensing.

6.
Ultrason Sonochem ; 107: 106932, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38824698

ABSTRACT

Artemisia argyi leaf polysaccharide (AALPs) were prepared through ultrasound-assisted extraction (UAE), and their antifatigue activities were evaluated. Extraction was optimized using response surface methodology (RSM), which yielded the following optimal UAE conditions: ultrasonication power of 300 W, extraction temperature of 51 °C, liquid:solid ratio of 20 mL/g, and ultrasonication time of 47 mins. The above optimal conditions resulted in the maximum extraction rate of 10.49 %. Compared with hot water extraction (HWE), UAE supported higher yields and total sugar, uronic acid, and sulfate contents of AALPs. Meanwhile, AALP prepared through UAE (AALP-U) exhibited higher stability due to its smaller particle size and higher absolute value of zeta potential than AALP prepared through HWE (AALP-H). In addition, AALP-U demonstrated stronger antioxidant activity than AALP-H. In forced swimming tests on mice, AALP-U could significantly prolong swimming time with a dose-dependent effect, increase liver and muscle glycogen levels, and improve other biochemical indices, thus showing great potential for application in functional food.


Subject(s)
Artemisia , Plant Leaves , Polysaccharides , Polysaccharides/pharmacology , Polysaccharides/isolation & purification , Polysaccharides/chemistry , Artemisia/chemistry , Plant Leaves/chemistry , Animals , Mice , Ultrasonic Waves , Chemical Fractionation/methods , Antioxidants/pharmacology , Antioxidants/isolation & purification , Antioxidants/chemistry , Green Chemistry Technology/methods , Male , Glycogen/metabolism , Swimming , Liver/drug effects
7.
Angew Chem Int Ed Engl ; : e202406043, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866704

ABSTRACT

Metal atom catalysts have been among the most important research objects due to their specific physical and chemical properties. However, precise control of the anchoring of metal atoms is still challenging to achieve. Cobalt and iridium atomic arrays formed sequentially ordered stable arrays in graphdiyne (GDY) triangular cavities depending on their intrinsic chemical properties and interactions. The success of this method was attributed to multifunctional integration of GDY, enabling selective growth from one to several atoms and various atomic densities. The bimetallic atom arrays show several advantages resulting from reducibility of acetylene bonds, space limiting effect, incomplete charge transfer between GDY and metal atoms, and sp-C hybridized triple bond skeleton. This well-designed system exhibits unprecedented oxygen evolution reaction (OER) performance with a mass activity of 2.6 A mgcat.-1 at a low overpotential of 300 mV, which is 216.6 times higher than the state-of-the-art IrO2 catalyst, and long-term stability.

8.
Asia Pac J Ophthalmol (Phila) ; 13(3): 100070, 2024.
Article in English | MEDLINE | ID: mdl-38777093

ABSTRACT

PURPOSE: To evaluate the dynamic transitions in diabetic retinopathy (DR) severity over time and associated risk factors in an Asian population with diabetes. DESIGN: Longitudinal cohort study METHODS: We analyzed data from 9481 adults in the Singapore Integrated Diabetic Retinopathy Screening Program (2010-2015) with linkage to death registry. A multistate Markov model adjusted for age, sex, systolic blood pressure (SBP), diabetes duration, HbA1c, and body mass index (BMI) was applied to estimate annual transition probabilities between four DR states (no, mild, moderate, and severe/proliferative) and death, and the mean sojourn time in each state. RESULTS: The median assessment interval was 12 months, with most patients having 3 assessments. Annual probabilities for DR progression (no-to-mild, mild-to-moderate and moderate-to-severe/proliferative) were 6.1 %, 7.0 % and 19.3 %, respectively; and for regression (mild-to-no, moderate-to-mild and severe-to-moderate) were 55.4 %, 17.3 % and 4.4 %, respectively. Annual mortality rates from each DR state were 1.2 %, 2.0 %, 18.7 %, and 30.0 %. The sojourn time in each state were 8.2, 0.8, 0.8 and 2.2 years. Higher HbA1c and SBP levels were associated with progression of no-mild and mild-moderate DR, and diabetes duration with no-to-mild and moderate-to-severe/proliferative DR. Lower HbA1c levels were associated with regression from mild-to-no and moderate-to-mild, and higher BMI with mild-to-no DR. CONCLUSIONS: Our results suggest a prolonged duration (∼8 years) in developing mild DR, with faster transitions (within a year) from mild or moderate states. Moderate/above DR greatly increases the probability of progression and death as compared to mild DR/below. HbA1c was associated with both progression as well as regression.


Subject(s)
Diabetic Retinopathy , Disease Progression , Humans , Diabetic Retinopathy/mortality , Male , Female , Middle Aged , Singapore/epidemiology , Risk Factors , Aged , Glycated Hemoglobin/metabolism , Adult , Follow-Up Studies , Diabetes Mellitus, Type 2/complications , Asian People , Longitudinal Studies
9.
HIV Med ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38812289

ABSTRACT

INTRODUCTION: Direct-acting antivirals (DAAs) are key to eliminating hepatitis C virus (HCV). In men who have sex with men (MSM) with HIV co-infection, recently acquired HCV infection is common. Sexual practices and reinfection rates may hamper micro-elimination despite high treatment rates. METHODS: The cohort included MSM with recently acquired HCV infection from 2014 to 2021. The patients' demographic, clinical, behavioural, and laboratory data and treatment and reinfection outcomes were documented. RESULTS: A total of 237 men with recently acquired HCV infection were included: 216 (91%) had HIV. The median age was 46 years (interquartile range [IQR] 39-52), and the median CD4 count was 660/mm3 (IQR 527-835). The annual incidence of recently acquired HCV remained between 0.28% and 0.43% but dropped to 0.02% in 2021 during the COVID pandemic, almost reaching micro-elimination. The reinfection incidence was 15.5 per 100 patient-years (95% confidence interval 12.6-18.8), and reinfection was associated with the use of crystal methamphetamine (p = 0.032) and ketamine (p = 0.042). In total, 31.3% had multiple reinfections, and four reinfections occurred in users of pre-exposure prophylaxis. CONCLUSIONS: High treatment and cure rates did not lead to HCV elimination. A change in sexual behaviour, potentially imposed by COVID-19 restrictions, led to micro-elimination in the NoCo cohort. As recently acquired HCV is prevalent in MSM with and without HIV, surveillance is necessary to consolidate elimination goals.

10.
Nat Commun ; 15(1): 4316, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773095

ABSTRACT

As signalling organelles, cilia regulate their G protein-coupled receptor content by ectocytosis, a process requiring localised actin dynamics to alter membrane shape. Photoreceptor outer segments comprise an expanse of folded membranes (discs) at the tip of highly-specialised connecting cilia, into which photosensitive GPCRs are concentrated. Discs are shed and remade daily. Defects in this process, due to mutations, cause retinitis pigmentosa (RP). Whilst fundamental for vision, the mechanism of photoreceptor disc generation is poorly understood. Here, we show membrane deformation required for disc genesis is driven by dynamic actin changes in a process akin to ectocytosis. We show RPGR, a leading RP gene, regulates actin-binding protein activity central to this process. Actin dynamics, required for disc formation, are perturbed in Rpgr mouse models, leading to aborted membrane shedding as ectosome-like vesicles, photoreceptor death and visual loss. Actin manipulation partially rescues this, suggesting the pathway could be targeted therapeutically. These findings help define how actin-mediated dynamics control outer segment turnover.


Subject(s)
Actins , Eye Proteins , Retinitis Pigmentosa , Animals , Actins/metabolism , Mice , Retinitis Pigmentosa/metabolism , Retinitis Pigmentosa/genetics , Eye Proteins/metabolism , Eye Proteins/genetics , Cilia/metabolism , Humans , Retinal Photoreceptor Cell Outer Segment/metabolism , Mice, Knockout , Mice, Inbred C57BL , Cell Membrane/metabolism
11.
Dev Cell ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38781974

ABSTRACT

Broad-spectrum disease resistance (BSR) is crucial for controlling plant diseases and relies on immune signals that are subject to transcriptional and post-translational regulation. How plants integrate and coordinate these signals remains unclear. We show here that the rice really interesting new gene (RING)-type E3 ubiquitin ligase OsRING113 targets APIP5, a negative regulator of plant immunity and programmed cell death (PCD), for 26S proteasomal degradation. The osring113 mutants in Nipponbare exhibited decreased BSR, while the overexpressing OsRING113 plants showed enhanced BSR against Magnaporthe oryzae (M. oryzae) and Xanthomonas oryzae pv. oryzae (Xoo). Furthermore, APIP5 directly suppressed the transcription of the Bowman-Birk trypsin inhibitor genes OsBBTI5 and AvrPiz-t-interacting protein 4 (APIP4). Overexpression of these two genes, which are partially required for APIP5-mediated PCD and disease resistance, conferred BSR. OsBBTI5 and APIP4 associated with and stabilized the pathogenesis-related protein OsPR1aL, which promotes M. oryzae resistance. Our results identify an immune module with integrated and coordinated hierarchical regulations that confer BSR in plants.

12.
Water Res ; 257: 121693, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38728785

ABSTRACT

Cyanobacterial harmful algal blooms (cyanoHABs) are becoming increasingly common in aquatic ecosystems worldwide. However, their heterogeneous distributions make it difficult to accurately estimate the total algae biomass and forecast the occurrence of surface cyanoHABs by using traditional monitoring methods. Although various optical instruments and remote sensing methods have been employed to monitor the dynamics of cyanoHABs at the water surface (i.e., bloom area, chlorophyll a), there is no effective in-situ methodology to monitor the dynamic change of cell density and integrated biovolume of algae throughout the water column. In this study, we propose a quantitative protocol for simultaneously measurements of multiple indicators (i.e., biovolume concentration, size distribution, cell density, and column-integrated biovolume) of cyanoHABs in water bodies by using the laser in-situ scattering and transmissometry (LISST) instrument. The accuracy of measurements of the biovolume and colony size of algae was evaluated and exceeded 95% when the water bloom was dominated by cyanobacteria. Furthermore, the cell density of cyanobacteria was well estimated based on total biovolume and mean cell volume measured by the instrument. Therefore, this methodology has the potential to be used for broader applications, not only to monitor the spatial and temporal distribution of algal biovolume concentration but also monitor the vertical distribution of cell density, biomass and their relationship with size distribution patterns. This provides new technical means for the monitoring and analysis of algae migration and early warning of the formation of cyanoHABs in lakes and reservoirs.


Subject(s)
Cyanobacteria , Environmental Monitoring , Environmental Monitoring/methods , Harmful Algal Bloom , Biomass , Eutrophication , Chlorophyll/analysis
13.
ACS Appl Mater Interfaces ; 16(21): 27463-27469, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38743927

ABSTRACT

Chlorine substitution, as an effective and low-cost modification strategy, has been applied in the design of donor and acceptor structures in organic solar cells. We synthesized a series of chlorinated dimerized acceptors to investigate the effect of chlorine numbers and locations on the photovoltaic properties. The results show that the planarity and morphology of DYV-γ-2Cl are greatly improved due to the appropriate numbers and positions of the substituted chlorine atoms. Therefore, the device based on PM6:DYV-γ-2Cl achieves a superior power conversion efficiency (PCE) of 15.54% among the three oligomeric acceptors with optimized molecular planarity and film morphology. This work demonstrated the positive effect of suitable numbers and the substitution positions of chlorines on the molecular arrangement and photovoltaic properties of the corresponding dimerized acceptors.

14.
Stress Biol ; 4(1): 24, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38668992

ABSTRACT

As one of the most important food and feed crops worldwide, maize suffers much more tremendous damages under heat stress compared to other plants, which seriously inhibits plant growth and reduces productivity. To mitigate the heat-induced damages and adapt to high temperature environment, plants have evolved a series of molecular mechanisms to sense, respond and adapt high temperatures and heat stress. In this review, we summarized recent advances in molecular regulations underlying high temperature sensing, heat stress response and memory in maize, especially focusing on several important pathways and signals in high temperature sensing, and the complex transcriptional regulation of ZmHSFs (Heat Shock Factors) in heat stress response. In addition, we highlighted interactions between ZmHSFs and several epigenetic regulation factors in coordinately regulating heat stress response and memory. Finally, we laid out strategies to systematically elucidate the regulatory network of maize heat stress response, and discussed approaches for breeding future heat-tolerance maize.

15.
Health Res Policy Syst ; 22(1): 49, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637888

ABSTRACT

Cardiovascular diseases (CVDs) are the major cause of death among Malaysians. Reduction of salt intake in populations is one of the most cost-effective strategies in the prevention of CVDs. It is very feasible as it requires low cost for implementation and yet could produce a positive impact on health. Thus, salt reduction initiatives have been initiated since 2010, and two series of strategies have been launched. However, there are issues on its delivery and outreach to the target audience. Further, strategies targeting out of home sectors are yet to be emphasized. Our recent findings on the perceptions, barriers and enablers towards salt reduction among various stakeholders including policy-makers, food industries, food operators, consumers and schools showed that eating outside of the home contributed to high salt intake. Foods sold outside the home generally contain a high amount of salt. Thus, this supplementary document is being proposed to strengthen the Salt Reduction Strategy to Prevent and Control Non-communicable Diseases (NCDs) for Malaysia 2021-2025 by focussing on the strategy for the out-of-home sectors. In this supplementary document, the Monitoring, Awareness and Product (M-A-P) strategies being used by the Ministry of Health (MOH) are adopted with a defined outline of the plan of action and indicators to ensure that targets could be achieved. The strategies will involve inter-sectoral and multi-disciplinary approaches, including monitoring of salt intake and educating consumers, strengthening the current enforcement of legislation on salt/sodium labelling and promoting research on reformulation. Other strategies included in this supplementary document included reformulation through proposing maximum salt targets for 14 food categories. It is hoped that this supplementary document could strengthen the current the Salt Reduction Strategy to Prevent and Control NCDs for Malaysia 2021-2025 particularly, for the out-of-home sector, to achieve a reduction in mean salt intake of the population to 6.0 g per day by 2025.


Subject(s)
Cardiovascular Diseases , Noncommunicable Diseases , Southeast Asian People , Humans , Sodium Chloride, Dietary , Noncommunicable Diseases/prevention & control , Malaysia , Health Policy , Cardiovascular Diseases/prevention & control
16.
Cancer Cell Int ; 24(1): 144, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654350

ABSTRACT

BACKGROUND: Breast cancer is the most common cancer in women worldwide. Toxoplasma gondii (T. gondii) has shown anticancer activity in breast cancer mouse models, and exerted beneficial effect on the survival of breast cancer patients, but the mechanism was unclear. METHODS: The effect of tachyzoites of T. gondii (RH and ME49 strains) on human breast cancer cells (MCF-7 and MDA-MB-231 cells) proliferation and migration was assessed using cell growth curve and wound healing assays. Dual RNA-seq was performed for T. gondii-infected and non-infected cells to determine the differentially expressed genes (DEGs). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein-Protein Interaction Networks analysis (PPI) were performed to explore the related signaling pathway and hub genes. Hub genes were validated using the Kaplan-Meier plotter database, and Pathogen Host Interaction (PHI-base) database. The results were verified by qRT-PCR. RESULTS: The tachyzoites of T. gondii decreased the expression of Ki67 and increased the expression of E-cadherin, resulting in suppressing the proliferation and migration of infected human breast cancer cells. The inhibitory effect of T. gondii on breast cancer cells showed a significant dose-response relationship. Compared with the control group, 2321 genes were transcriptionally regulated in MCF-7 cells infected with T. gondii, while 169 genes were transcriptionally regulated in infected MDA-MB-231 cells. Among these genes, 698 genes in infected MCF-7 cells and 67 genes in infected MDA-MB-231 cells were validated by the publicly available database. GO and KEGG analyses suggested that several pathways were involved in anticancer function of T. gondii, such as ribosome, interleukin-17 signaling, coronavirus disease pathway, and breast cancer pathway. BRCA1, MYC and IL-6 were identified as the top three hub genes in infected-breast cancer cells based on the connectivity of PPI analysis. In addition, after interacting with breast cancer cells, the expression of ROP16 and ROP18 in T. gondii increased, while the expression of crt, TgIST, GRA15, GRA24 and MIC13 decreased. CONCLUSIONS: T. gondii transcriptionally regulates several signaling pathways by altering the hub genes such as BRCA1, MYC and IL-6, which can inhibit the breast tumor growth and migration, hinting at a potential therapeutic strategy.

17.
Water Res ; 256: 121573, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38608618

ABSTRACT

Sulfidated zero valent iron (ZVI) is a popular material for the reductive degradation of halogenated organic pollutants. Simple and economic synthesis of this material is highly demanded. In this study, sulfidated micro/nanostructured ZVI (MNZVI) particles were prepared by simply heating MNZVI particles and sulfur elements (S0) in pure water (50℃). The iron oxides on the surface of MNZVI particles were conducive to sulfidation reaction, indicating the formation of iron-sulphide minerals (FeSx) on the surface of MNZVI particles might not be from the direct reaction of Fe0 with S0 (Fe0 and S0 acted as reductant and oxidant, respectively). As an important reductant, hydrogen atom (H•) can be generated from the reduction of H+ by MNZVI particles and participate in the formation of FeSx. Quenching experiment and cyclic voltammetry analysis proved the existence of H• on the surface of MNZVI particles. DFT calculation found that the potential barrier of H•/S0 and Fe0/S0 were 1.91 and 7.24 eV, respectively, indicating that S0 would preferentially react with H• instead of Fe0. The formed H• can quickly react with S0 to generate hydrogen sulfide (H2S), which can further react with iron oxides such as α-Fe2O3 on the surface of MNZVI particles to form FeSx. In addition, the H2 partial pressure in water significantly affected the amount of H• generated, thereby affecting the sulfidation efficiency. For TCE degradation, as the sulfur loading of sulfidated MNZVI particles increased, the contribution of H• significantly decreased while the contribution of direct electron transfer increased. This study provided new insights into the synthesis mechanism of sulfidated ZVI in water.


Subject(s)
Hydrogen , Iron , Hydrogen/chemistry , Iron/chemistry , Oxidation-Reduction
18.
J Org Chem ; 89(9): 6607-6614, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38624206

ABSTRACT

The trivalent phosphine-catalyzed [4+1] spiro-annulation reaction of allenyl imide and activated methylene cyclocompounds has been developed for the construction of various spiro-2-cyclopenten-1-ones. Oxindoles, 3-isochromanones, and 2-indanones are selected as 1C synthons to capture the in situ-generated bis-electrophilic α,ß-unsaturated ketenyl phosphonium intermediate, affording the corresponding monospiro- and bispiro-cyclopentenones in good to excellent yields (≤91%) under mild conditions. The primary attempt at asymmetric catalysis using monophosphine (R)-SITCP provides promising enantioselectivity (45% ee). A plausible reaction mechanism is also proposed.

19.
Zhongguo Zhong Yao Za Zhi ; 49(3): 809-818, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621885

ABSTRACT

Scutellariae Radix extract is one of the important components in Shuganning Injection. In this study, an ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) method was established for simultaneously determining five components in Shuganning Injection and Scutellariae Radix extract in bile, urine, and feces of rats, so as to reveal the difference in the excretion process of Shuganning Injection and Scutellariae Radix extract in rats and explore the law of the excretion process of the five components in vivo before and after the compatibility of Scutellariae Radix. Rats were injected with Shuganning Injection and Scutellariae Radix extract(4.2 mL·kg~(-1)), respectively, and the excretion of baicalin, baicalein, oroxylin A, oroxylin A-7-O-ß-D-glucuronide, and scutellarin in bile, urine, and feces of rats in 24 h was observed. The results showed that except for baicalin, the other four index components were excreted as prototype components in a high proportion after intravenous injection of Shuganning Injection and Scutellariae Radix extract in rats, respectively. The excretion of each component was relatively high in urine and less in feces and bile. After the compatibility of Scutellariae Radix extract, the accumulative excretion of five index components in rats all decreased. Among them, the cumulative excretion of baicalein in bile, urine, and feces significantly decreased by 26.67%, 48.11%, and 31.01%. The cumulative excretion of baicalin in bile, urine, and feces decreased significantly by 70.69%, 19.43%, and 31.22%. The result showed that the five index components in Scutellariae Radix extract were mainly excreted by the kidneys, and other components in Shuganning Injection delayed the excretion process and prolonged the residence time. This study is of great significance for elucidating the compatibility rationality of Shuganning Injection.


Subject(s)
Bile , Scutellaria baicalensis , Rats , Animals , Chromatography, Liquid , Tandem Mass Spectrometry , Flavonoids , Feces , Chromatography, High Pressure Liquid
20.
Gen Comp Endocrinol ; 352: 114500, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38508470

ABSTRACT

Circular RNAs (circRNAs) are non-coding RNAs with endogenous regulatory functions, including regulating skeletal muscle development. However, its role in the development of skeletal muscle in Japanese flounder (Paralichthys olivaceus) is not clear. Therefore we screened a candidate circpdlim5a, which is derived from the gene pdlim5a, from the skeletal muscle transcriptome of Japanese flounder. We characterized circpdlim5a, which was more stable compared to the linear RNA pdlim5a. Distributional characterization of circpdlim5a showed that circpdlim5a was predominantly distributed in the nucleus and was highly expressed in the skeletal muscle of adult Japanese flounder (24 months). When we further studied the circpdlim5a function, we found that it inhibited the expression of proliferation and differentiation genes according to the over-expression experiment of circpdlim5a in myoblasts. We concluded that circpdlim5a may inhibit the proliferation and differentiation of myoblasts and thereby inhibit skeletal muscle development in Japanese flounder. This experiment provides information for the study of circRNAs by identifying circpdlim5a and exploring its function, and offers clues for molecular breeding from an epigenetic perspective.


Subject(s)
Flounder , Animals , Flounder/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...