Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.978
1.
Heliyon ; 10(9): e30151, 2024 May 15.
Article En | MEDLINE | ID: mdl-38707465

In 2015, the Chinese government issued the Decision on Poverty Alleviation(DPA), requiring poverty-stricken areas to develop local characteristic industries based on their resource endowments, to promote industrial structure diversification and industrial structure upgrading through industry-driven poverty alleviation. However, existing research lacks empirical analysis to evaluate it. Therefore, this paper takes poor counties in the Qinba Mountain contiguous poverty-stricken areas(QMCPA) as an example, using the difference in difference model and boundary effect model to evaluate whether DPA has promoted industrial structure upgrading and industrial structure diversification in poor counties. The results show that the DPA has promoted industrial structure upgrading and improved industrial structure diversification in the QMCPA. However, the effectiveness of it is not sufficient. Poor counties have failed to maintain the policy requirement of developing characteristic industries based on local natural resource endowments, leading to a decline in the degree of industrial structure diversification in the later period of the policy. This study indicates that local governments should strive to develop advantageous industries and form a division of labor and cooperation with neighboring areas, strengthen inter-regional cooperation and contact, and enhance anti-risk capabilities to avoid homogenized competition. Studying the changes in industrial structure in the QMCPA has important significance for the long-term stable development and poverty elimination of various poor areas.

2.
Plant Dis ; 2024 May 08.
Article En | MEDLINE | ID: mdl-38720534

Large-berry coffee (Coffea liberica) is one of the three cultivated coffee species and a precious breeding germplasm in China (Yan et al, 2019). Anthracnose is a damaging epidemic disease on coffee worldwide (Mohammed et al. 2015). Between June and September 2022, anthracnose was observed on coffee plants in Puer area, Yunnan, China and disease incidence (% plants diseased) of 8.5%-28.2% was recorded in the field. The disease symptoms were observed at all growth stages. Lesions on leaves were circular or oval, with a white to gray central zone outlined by a brown margin and surrounded by a chlorotic halo, Φ5.1-18.5 mm; some lesions extended and coalesced later to form large, blighted areas, leading to complete leaf senescence, defoliation and bare blighted branches on heavily infected trees. The spots on coffee berries were oval or fusiform, sunken and brown-black; diseased berries became gray-black and dried-out but remained on the tree. Leaves with typical anthracnose lesions were collected from fields in Simao ( 22.07°E,100.98°N) to isolate the pathogen. Leaf pieces (5×5mm) from the lesion margin were cut, surface-sterilized with 75% ethanol and 2% NaClO, and cultured on PDA at 25°C. Three isolates with the same colony morphology were obtained by hyphal tip purification. Detached and intact leaves of 6-month coffee seedlings were inoculated with Φ5mm mycelial discs of the isolates. Anthracnose lesions developed on the inoculated leaves, with all 3 isolates, 7d after incubation in a growth chamber (25°C, > 90% RH and lighting 8 h/d at 11000 lux). Pathogens with the same colony morphology as those of the original isolates were re-isolated from the infected tissues of inoculated leaves, thus fulfilling Koch's Postulates. The ITS sequence (PP550861) for the isolate was PCR-amplified and Blast-n analyses showed 100 % (554/554bp) identity to Colletotrichum kahawae LWTJ01; so they were the same population and coded as KFTJ02. The actin (ACT), calmodulin(CAL), glyceraldehydes-3-phosphate dehydrogenase (GAPHD) and histone 3 (HIS3) genes (Qiu et al. 2020) were amplified from one of KFTJ02 isolates, sequenced and deposited in NCBI GenBank (OR842543, OR842544, OR842545 & OR842546). A phylogenetic tree was generated based on the concatenated sequences of the four genes and those of related Colletotrichum spp. using MEGA 6.0 and KFTJ02 clustered in the same clade with C. kahawae IMI319418 on the tree (Bootstrap sup.=88%). When cultured at 25°C on PDA for 7 days, its colonies were near round or ovoid, gray-white, contoured, Φ73.2-80.1 (76.2±2.3)mm or growth rate 10.2-11.1(8.1) mm/d (n=10). The hyphae were hyaline, septated, branching at near right angles. Conidial masses formed 14 days after incubation. The conidia were elliptical, hyaline, monocellular, 10.2-15.5 (12.7±1.06)×3.8-5.2 (4.3±0.52) µm (n=50). The appressoria were black-brown, oval or irregular, 7.8-9.3 (8.5±0.81)µm (n= 50). These morphological characteristics were consistent with those of C. kahawae (Bridge et al, 2008). Therefore, KFTJ02 was identified as C. kahawae, which has been found to infect Camellia oleifera, Areca catechu and Ficus microcarpa (Wei et al, 2023; Zhang et al, 2020; Lin 2023). The coffee berry disease pathogen (C. kahawae) is a quarantine species which has not been recorded and so it is first reported on coffee crops in China. Results of the present study provide important references for further studies on this disease.

3.
J Phys Chem Lett ; 15(18): 4992-4999, 2024 May 09.
Article En | MEDLINE | ID: mdl-38695534

The intrinsic anisotropy of NbSe2 provides a favorable prerequisite of second harmonic generation (SHG) and rich possibilities for tailoring its nonlinear optical (NLO) properties. Here we report the highly efficient SHG of mechanically exfoliated NbSe2 flakes. The nonlinear optical response changes with excitation wavelengths, layer thicknesses, and polarizations of the excitation laser. The anisotropic SHG response further exhibits the intrinsic non-centrosymmetric crystal structure and could effectively assign the crystalline orientation of NbSe2 flakes. Interestingly, although NbSe2 flakes with tens of nanometers thickness experience attenuations in SHG performance, more efficient SHG anisotropy ratios were obtained, which are around 4 times higher than that of the 5-layer counterpart. The determined second-order nonlinearities of NbSe2 flakes (monolayer: ∼1.0 × 103 pm/V; 3-layer: ∼73 pm/V) are comparable to those of the commonly reported two-dimensional materials (e.g., MoS2, WSe2, graphene) with the same number of layers and much higher than those of commercial nonlinear optical crystals.

4.
Cell Rep ; 43(6): 114265, 2024 May 27.
Article En | MEDLINE | ID: mdl-38805396

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein continues to evolve antigenically, impacting antibody immunity. D1F6, an affinity-matured non-stereotypic VH1-2 antibody isolated from a patient infected with the SARS-CoV-2 ancestral strain, effectively neutralizes most Omicron variants tested, including XBB.1.5. We identify that D1F6 in the immunoglobulin G (IgG) form is able to overcome the effect of most Omicron mutations through its avidity-enhanced multivalent S-trimer binding. Cryo-electron microscopy (cryo-EM) and biochemical analyses show that three simultaneous epitope mutations are generally needed to substantially disrupt the multivalent S-trimer binding by D1F6 IgG. Antigenic mutations at spike positions 346, 444, and 445, which appeared in the latest variants, have little effect on D1F6 binding individually. However, these mutations are able to act synergistically with earlier Omicron mutations to impair neutralization by affecting the interaction between D1F6 IgG and the S-trimer. These results provide insight into the mechanism by which accumulated antigenic mutations facilitate evasion of affinity-matured antibodies.

5.
Biosens Bioelectron ; 260: 116428, 2024 May 24.
Article En | MEDLINE | ID: mdl-38805891

To address the limitations of the CRISPR/Cas12f1 system in clinical diagnostics, which require the complex preparation of single-stranded DNA (ssDNA) or in vitro transcripts (RNA), we developed a fluorescent biosensor named PDTCTR (PAM-dependent dsDNA Target-activated Cas12f1 Trans Reporter). This innovative biosensor integrates Recombinase Polymerase Amplification (RPA) with the Cas12f_ge4.1 system, facilitating the direct detection of double-stranded DNA (dsDNA). PDTCTR represents a significant leap forward, exhibiting a detection sensitivity that is a hundredfold greater than the original Cas12f1 system. It demonstrates the capability to detect Mycoplasma pneumoniae (M. pneumoniae) and Hepatitis B virus (HBV) with excellent sensitivity of 10 copies per microliter (16.8 aM) and distinguishes single nucleotide variations (SNVs) with high precision, including the EGFR (L858R) mutations prevalent in non-small cell lung cancer (NSCLC). Clinical evaluations of PDTCTR have demonstrated its high sensitivity and specificity, with rates ranging from 93%-100% and 100%, respectively, highlighting its potential to revolutionize diagnostic approaches for infectious diseases and cancer-related SNVs.This research underscores the substantial advancements in CRISPR technology for clinical diagnostics and its promising future in early disease detection and personalized medicine.

6.
Article En | MEDLINE | ID: mdl-38766766

The blood-brain barrier (BBB) plays a critical role in the development and outcome of subarachnoid hemorrhage (SAH). This study focuses on the potential mechanism by which GPR30 affects the BBB after SAH. A rat SAH model was established using an intravascular perforation approach. G1 (GPR30 agonist) was administered to investigate the mechanism of BBB damage after SAH. Brain water content, western blotting, Evans blue leakage, and immunofluorescence staining were performed. Brain microvascular endothelial cells were induced by hemin to establish SAH model in vitro. By adding LY294002 (a PI3K blocker) and ZnPP IX (an HO-1 antagonist), the mechanism of improving BBB integrity through the activation of GPR30 was studied. In vivo, GPR30 activation improved BBB disruption, as evidenced by decreased cerebral edema, downregulated Albumin expression, and reduced extravasation of Evans blue and lgG after G1 administration in SAH rats. Moreover, SAH downregulated the levels of tight junction (TJ) proteins, while treatment with G1 reversed the effect of SAH. The protective effect of G1 on BBB integrity in vitro was consistent with that in vivo, as evidenced by G1 reducing the impact of hemin on TEER value, dextran diffusivity, and TJ protein levels in brain microvascular endothelial cells. In addition, G1 activated the PI3K/AKT and Nrf2/HO-1 pathways both in vivo and in vitro. Furthermore, the administration of LY294002 and ZnPP IX partially reversed the protective effect of G1 on BBB integrity in hemin-stimulated cells. These findings provide valuable insights for potential treatments for SAH. NEW & NOTEWORTHY We demonstrated that the activation of GPR30, at least partly through the PI3K/AKT and Nrf2/HO-1 pathways, alleviated BBB damage both in vivo and in vitro. This study introduced a novel therapeutic approach for protecting the BBB after SAH.

7.
Sci Total Environ ; : 173331, 2024 May 20.
Article En | MEDLINE | ID: mdl-38777070

Organic carbon (OC) and elemental carbon (EC) in fine particulate matter (PM2.5) play pivotal roles in impacting human health, air quality, and climate change dynamics. Long-term monitoring datasets of OC and EC in PM2.5 are indispensable for comprehending their temporal variations, spatial distribution, evolutionary patterns, and trends, as well as for assessing the effectiveness of clean air action plans. This study presents and scrutinizes a comprehensive 10-year hourly dataset of PM2.5-bound OC and EC in the megacity of Beijing, China, spanning from 2013 to 2022. Throughout the entire study period, the average concentrations of OC and EC were recorded at 8.8 ±â€¯8.7 and 2.5 ±â€¯3.0 µg/m3, respectively. Employing the seasonal and trend decomposition methodology, specifically the locally estimated scatter plot smoothing method combined with generalized least squares with the autoregressive moving average method, the study observed a significant decline in OC and EC concentrations, reducing by 5.8 % yr-1 and 9.9 % yr-1 at rates of 0.8 and 0.4 µg/m3 yr-1, respectively. These declining trends were consistently verified using Theil-Sen method. Notably, the winter months exhibited the most substantial declining trends, with rates of 9.3 % yr-1 for OC and 10.9 % yr-1 for EC, aligning with the positive impact of the implemented clean air action plan. Weekend spikes in OC and EC levels were attributed to factors such as traffic regulations and residential emissions. Diurnal variations showcased higher concentrations during nighttime and lower levels during daytime. Although meteorological factors demonstrated an overall positive impact with average reduction in OC and EC concentrations by 8.3 % and 8.7 %, clean air action plans including the Air Pollution Prevention and Control Action Plan (2013-2017) and the Three-Year Action Plan to Win the Blue Sky War (2018-2020) have more contributions in reducing the OC and EC concentrations with mass drop rates of 87.1 % and 89.2 % and 76.7 % and 96.7 %, respectively. Utilizing the non-parametric wind regression method, significant concentration hotspots were identified at wind speeds of ≤2 m/s, with diffuse signals recorded in the southwestern wind sectors at wind speeds of approximately 4-5 m/s. Interannual disparities in potential source regions of OC and EC were evident, with high potential source areas observed in the southern and northwestern provinces of Beijing from 2013 to 2018. In contrast, during 2019-2022, potential source areas with relatively high values of potential source contribution function were predominantly situated in the southern regions of Beijing. This analysis, grounded in observational data, provides insights into the decadal changes in the major atmospheric composition of PM2.5 and facilitates the evaluation of the efficacy of control policies, particularly relevant for developing countries.

8.
J Org Chem ; 2024 May 24.
Article En | MEDLINE | ID: mdl-38787343

A halide-free ionic pair organocatalyst was proposed for the cycloaddition of CO2 into epoxide reactions. Cholinium pyridinolate ionic pairs with three different substitution positions were designed. Under conditions of temperature of 120 °C, pressure of 1 MPa CO2, and catalyst loading of 5 mol %, the optimal catalyst cholinium 4-pyridinolate ([Ch]+[4-OP]-) was employed. After a reaction time of 12 h, styrene oxide was successfully converted into the corresponding cyclic carbonate, and its selectivity was improved to 90%. A series of terminal epoxides were converted into cyclic carbonates within 12 h, with yields ranging from 80 to 99%. The proposed mechanism was verified by 1H NMR and 13C NMR titrations. Cholinium cations act as a hydrogen bond donor to activate epoxides, and pyridinolate anions combine with carbon dioxide to form intermediate carbonate anions that attack epoxides as nucleophiles and lead to ring opening. In summary, a halide-free ionic pair organocatalyst was designed and the catalytic mechanism in the cycloaddition of CO2 into epoxides reactions was proposed.

9.
J Neuroimmune Pharmacol ; 19(1): 24, 2024 May 23.
Article En | MEDLINE | ID: mdl-38780885

Cornuside has been discovered to improve learning and memory in AD mice, however, its underlying mechanism was not fully understood. In the present study, we established an AD mice model by intracerebroventricular injection of Aß1-42, which were treated with cornuside (3, 10, 30 mg/kg) for 2 weeks. Cornuside significantly ameliorated cognitive function of AD mice in series of behavioral tests, including Morris water maze test, nest building test, novel object recognition test and step-down test. Additionally, cornuside could attenuate neuronal injury, and promote cholinergic synaptic transmission by restoring the level of acetylcholine (ACh) via inhibiting acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), as well as facilitating choline acetyltransferase (ChAT). Furthermore, cornuside inhibited oxidative stress levels amplified as decreased malondialdehyde (MDA), by inhibiting TXNIP expression, improving total anti-oxidative capacity (TAOC), raising activities of superoxide dismutase (SOD) and catalase (CAT). Cornuside also reduced the activation of microglia and astrocytes, decreased the level of proinflammatory factors TNF-α, IL-6, IL-1ß, iNOS and COX2 via interfering RAGE-mediated IKK-IκB-NF-κB phosphorylation. Similar anti-oxidative and anti-inflammatory effects were also found in LPS-stimulated BV2 cells via hampering RAGE-mediated TXNIP activation and NF-κB nuclear translocation. Virtual docking revealed that cornuside could interact with the active pocket of RAGE V domain directly. In conclusion, cornuside could bind to the RAGE directly impeding the interaction of Aß and RAGE, and cut down the expression of TXNIP inhibiting ROS production and oxidative stress, as well as hamper NF-κB p65 mediated the inflammation.


Alzheimer Disease , Amyloid beta-Peptides , Cognitive Dysfunction , NF-kappa B , Peptide Fragments , Receptor for Advanced Glycation End Products , Signal Transduction , Animals , Mice , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/chemically induced , Amyloid beta-Peptides/toxicity , Amyloid beta-Peptides/metabolism , Peptide Fragments/toxicity , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/chemically induced , Signal Transduction/drug effects , Receptor for Advanced Glycation End Products/metabolism , NF-kappa B/metabolism , Male , Oxidative Stress/drug effects
10.
Front Vet Sci ; 11: 1351962, 2024.
Article En | MEDLINE | ID: mdl-38689852

Virulence factors (VFs) are key factors for microorganisms to establish defense mechanisms in the host and enhance their pathogenic potential. However, the spectrum of virulence factors in pig colon and feces, as well as the influence of dietary and genetic factors on them, remains unreported. In this study, we firstly revealed the diversity, abundance and distribution characteristics of VFs in the colonic contents of different breeds of pigs (Taoyuan, Xiangcun and Duroc pig) fed with different fiber levels by using a metagenomic analysis. The analysis resulted in the identification of 1,236 virulence factors, which could be grouped into 16 virulence features. Among these, Taoyuan pigs exhibited significantly higher levels of virulence factors compared to Duroc pigs. The high-fiber diet significantly reduced the abundance of certain virulence factor categories, including iron uptake systems (FbpABC, HitABC) and Ig protease categories in the colon, along with a noteworthy decrease in the relative abundance of plasmid categories in mobile genetic elements (MGEs). Further we examined VFs in feces using absolute quantification. The results showed that high-fiber diets reduce fecal excretion of VFs and that this effect is strongly influenced by MGEs and short-chain fatty acids (SCFAs). In vitro fermentation experiments confirmed that acetic acid (AA) led to a decrease in the relative abundance of VFs (p < 0.1). In conclusion, our findings reveal for the first time how fiber diet and genetic factors affect the distribution of VFs in pig colon contents and feces and their driving factors. This information provides valuable reference data to further improve food safety and animal health.

11.
Front Pharmacol ; 15: 1370444, 2024.
Article En | MEDLINE | ID: mdl-38694916

Introduction: The escalating global surge in Rifampicin-resistant strains poses a formidable challenge to the worldwide campaign against tuberculosis (TB), particularly in developing countries. The frequent reports of suboptimal treatment outcomes, complications, and the absence of definitive treatment guidelines for Rifampicin-resistant spinal TB (DSTB) contribute significantly to the obstacles in its effective management. Consequently, there is an urgent need for innovative and efficacious drugs to address Rifampicin-resistant spinal tuberculosis, minimizing the duration of therapy sessions. This study aims to investigate potential targets for DSTB through comprehensive proteomic and pharmaco-transcriptomic analyses. Methods: Mass spectrometry-based proteomics analysis was employed to validate potential DSTB-related targets. PPI analysis confirmed by Immunohistochemistry (IHC) and Western blot analysis. Results: The proteomics analysis revealed 373 differentially expressed proteins (DEPs), with 137 upregulated and 236 downregulated proteins. Subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses delved into the DSTB-related pathways associated with these DEPs. In the context of network pharmacology analysis, five key targets-human leukocyte antigen A chain (HLAA), human leukocyte antigen C chain (HLA-C), HLA Class II Histocompatibility Antigen, DRB1 Beta Chain (HLA-DRB1), metalloproteinase 9 (MMP9), and Phospholipase C-like 1 (PLCL1)-were identified as pivotal players in pathways such as "Antigen processing and presentation" and "Phagosome," which are crucially enriched in DSTB. Moreover, pharmaco-transcriptomic analysis can confirm that 58 drug compounds can regulate the expression of the key targets. Discussion: This research confirms the presence of protein alterations during the Rifampicin-resistant process in DSTB patients, offering novel insights into the molecular mechanisms underpinning DSTB. The findings suggest a promising avenue for the development of targeted drugs to enhance the management of Rifampicin-resistant spinal tuberculosis.

12.
Front Med (Lausanne) ; 11: 1254467, 2024.
Article En | MEDLINE | ID: mdl-38695016

Background: Preeclampsia (PE) is a pregnancy complication defined by new onset hypertension and proteinuria or other maternal organ damage after 20 weeks of gestation. Although non-invasive prenatal testing (NIPT) has been widely used to detect fetal chromosomal abnormalities during pregnancy, its performance in combination with maternal risk factors to screen for PE has not been extensively validated. Our aim was to develop and validate classifiers that predict early- or late-onset PE using the maternal plasma cell-free DNA (cfDNA) profile and clinical risk factors. Methods: We retrospectively collected and analyzed NIPT data of 2,727 pregnant women aged 24-45 years from four hospitals in China, which had previously been used to screen for fetal aneuploidy at 12 + 0 ~ 22 + 6 weeks of gestation. According to the diagnostic criteria for PE and the time of diagnosis (34 weeks of gestation), a total of 143 early-, 580 late-onset PE samples and 2,004 healthy controls were included. The wilcoxon rank sum test was used to identify the cfDNA profile for PE prediction. The Fisher's exact test and Mann-Whitney U-test were used to compare categorical and continuous variables of clinical risk factors between PE samples and healthy controls, respectively. Machine learning methods were performed to develop and validate PE classifiers based on the cfDNA profile and clinical risk factors. Results: By using NIPT data to analyze cfDNA coverages in promoter regions, we found the cfDNA profile, which was differential cfDNA coverages in gene promoter regions between PE and healthy controls, could be used to predict early- and late-onset PE. Maternal age, body mass index, parity, past medical histories and method of conception were significantly differential between PE and healthy pregnant women. With a false positive rate of 10%, the classifiers based on the combination of the cfDNA profile and clinical risk factors predicted early- and late-onset PE in four datasets with an average accuracy of 89 and 80% and an average sensitivity of 63 and 48%, respectively. Conclusion: Incorporating cfDNA profiles in classifiers might reduce performance variations in PE models based only on clinical risk factors, potentially expanding the application of NIPT in PE screening in the future.

13.
Eur J Pharmacol ; 975: 176632, 2024 May 06.
Article En | MEDLINE | ID: mdl-38718959

Myocardial fibrosis (MF) is a pivotal pathological process implicated in various cardiovascular diseases, particularly heart failure. Astragaloside IV (AS-IV), a natural compound derived from Astragalus membranaceus, possesses potent cardioprotective properties. However, the precise molecular mechanisms underlying its anti-MF effects, particularly in relation to senescence, remain elusive. Thus, this study aimed to investigate the therapeutic potential and underlying molecular mechanisms of AS-IV in treating ISO-induced MF in mice, employing transcriptomics, proteomics, in vitro, and in vivo experiments. We assessed the positive effects of AS-IV on ISO-induced MF using HE staining, Masson staining, ELISA, immunohistochemical staining, transthoracic echocardiography, transmission electron microscopy, and DHE fluorescence staining. Additionally, we elucidated the regulatory role of AS-IV in MF through comprehensive transcriptomics and proteomics analyses, complemented by Western blotting and RT-qPCR validation of pertinent molecular pathways. Our findings demonstrated that AS-IV treatment markedly attenuated ISO-induced myocardial injury and oxidative stress, concomitantly inhibiting the release of SASPs. Furthermore, integrated transcriptomics and proteomics analyses revealed that the anti-MF mechanism of AS-IV was associated with regulating cellular senescence and the p53 signaling pathway. These results highlight AS-IV exerts its anti-MF effects not only by inhibiting oxidative stress but also by modulating senescence through the p53 signaling pathway.

14.
Adv Mater ; : e2402435, 2024 May 09.
Article En | MEDLINE | ID: mdl-38723286

III-V semiconductors possess high mobility, high frequency response, and detection sensitivity, making them potentially attractive for beyond-silicon electronics applications. However, the traditional heteroepitaxy of III-V semiconductors is impeded by a significant lattice mismatch and the necessity for extreme vacuum and high temperature conditions, thereby impeding their in situ compatibility with flexible substrates and silicon-based circuits. In this study, a novel approach is presented for fabricating ultrathin InSb single-crystal nanosheets on arbitrary substrates with a thickness as thin as 2.4 nm using low-thermal-budget van der Waals (vdW) epitaxy through chemical vapor deposition (CVD). In particular, in situ growth has been successfully achieved on both silicon-based substrates and flexible polyimide (PI) substrates. Notably, the growth temperature required for InSb nanosheets (240 °C) is significantly lower than that employed in back-end-of-line processes (400 °C). The field effect transistor devices based on fabricated ultrathin InSb nanosheets exhibit ultra-high on-off ratio exceeding 108 and demonstrate minimal gate leakage currents. Furthermore, these ultrathin InSb nanosheets display p-type characteristics with hole mobilities reaching up to 203 cm2 V-1 s-1 at room temperatures. This study paves the way for achieving heterogeneous integration of III-V semiconductors and facilitating their application in flexible electronics.

15.
Eur J Obstet Gynecol Reprod Biol ; 298: 128-134, 2024 May 11.
Article En | MEDLINE | ID: mdl-38756052

OBJECTIVE: To determine the detection rate of chromosomal abnormalities and pregnancy outcomes in fetuses with intrauterine growth restriction. Study design A total of 151 fetal samples with intrauterine growth restriction were divided into the isolated fetal growth restriction (FGR) group, FGR group with structural malformation, and FGR group with non-structural malformation, according to ultrasound abnormalities. The enrolled patients were divided into an early onset FGR group (<32 weeks) and a late-onset FGR group (≥32 weeks). Chromosomal karyotype and microarray analyses were performed and pregnancy outcomes were monitored. Results The karyotypes of 122 patients were analyzed. Four patients exhibited abnormal chromosome numbers or structures. Variations in copy number were detected in 151 cases; 19 cases were found to have chromosomal abnormalities, with a positivity rate of 12.6 %. There was one trisomy in 18 cases, one trisomy in 21 cases, eight pathogenic copy number variations (CNVs), and nine CNVs of unknown clinical significance. The detection rate of FGR combined with structural malformation was significantly higher than that of isolated FGR group. The detection rate of FGR with structural malformations was significantly higher than that with non-structural malformations. The positive detection rate in the FGR group was similar to that in the FGR group with non-structural malformations, with no statistical significance. Chromosomal abnormalities were detected in 17 patients with early onset FGR, with a positivity rate of 13.8 %. Two cases of chromosomal abnormalities were detected in the late-onset FGR group, with a positive rate of 7.1 %, with no statistical significance. A total of 151 fetuses with FGR were followed up for pregnancy outcomes, resulting in 36 cases of pregnancy termination and 13 cases of loss to follow-up. Among the 102 delivered fetuses, six exhibited delayed growth and development, one presented with hypospadias, and another failed the hearing screening. The remaining 94 fetuses demonstrated normal growth and development. Conclusions This study confirms the value of CNV detection in fetuses and dynamic ultrasound monitoring for fetuses with intrauterine growth restriction.

16.
Nano Lett ; 24(19): 5862-5869, 2024 May 15.
Article En | MEDLINE | ID: mdl-38709809

Dynamic vision perception and processing (DVPP) is in high demand by booming edge artificial intelligence. However, existing imaging systems suffer from low efficiency or low compatibility with advanced machine vision techniques. Here, we propose a reconfigurable bipolar image sensor (RBIS) for in-sensor DVPP based on a two-dimensional WSe2/GeSe heterostructure device. Owing to the gate-tunable and reversible built-in electric field, its photoresponse shows bipolarity as being positive or negative. High-efficiency DVPP incorporating front-end RBIS and back-end CNN is then demonstrated. It shows a high recognition accuracy of over 94.9% on the derived DVS128 data set and requires much fewer neural network parameters than that without RBIS. Moreover, we demonstrate an optimized device with a vertically stacked structure and a stable nonvolatile bipolarity, which enables more efficient DVPP hardware. Our work demonstrates the potential of fabricating DVPP devices with a simple structure, high efficiency, and outputs compatible with advanced algorithms.

18.
J Anim Sci Biotechnol ; 15(1): 61, 2024 May 03.
Article En | MEDLINE | ID: mdl-38698473

Rotavirus is one of the pathogenic causes that induce diarrhea in young animals, especially piglets, worldwide. However, nowadays, there is no specific drug available to treat the disease, and the related vaccines have no obvious efficiency in some countries. Via analyzing the pathogenesis of rotavirus, it inducing diarrhea is mainly due to disturb enteric nervous system, destroy gut mucosal integrity, induce intracellular electrolyte imbalance, and impair gut microbiota and immunity. Many studies have already proved that prebiotics and probiotics can mitigate the damage and diarrhea induced by rotavirus infection in hosts. Based on these, the current review summarizes and discusses the effects and mechanisms of prebiotics and probiotics on rotavirus-induced diarrhea in piglets. This information will highlight the basis for the swine production utilization of prebiotics and probiotics in the prevention or treatment of rotavirus infection in the future.

19.
Plants (Basel) ; 13(10)2024 May 17.
Article En | MEDLINE | ID: mdl-38794472

(1) Background: Crop yields in China's arid and semi-arid regions are limited by water shortages. Exploring the interactions and resource utilization among agroforestry species is key to maintaining diversified agricultural production. (2) Objective: An apple-watermelon agroforestry system and watermelon sole-cropping system were compared to quantify how resource availability (light, water) and watermelon performance (leaf photosynthetic rate, growth, and yield) change with irrigation strategies. (3) Methods: A three-year apple and watermelon field experiment was conducted in a young apple orchard in the arid area of central Ningxia to test the effect of light competition and irrigation systems on light environment, leaf photosynthetic rate, plant growth, and yield in watermelon. The experiment encompassed two planting patterns: (i) apple-watermelon agroforestry (AF) and watermelon sole-cropping (SC) and (ii) three irrigation quotas (W1: 105 mm, W2: 210 mm, and W3: 315 mm). (4) Results: The results show that the agroforestry planting pattern extended the growth period of watermelon and increased the leaf area index. Mean daily shade intensity increased by 16.02% from 2020 to 2022. The land equivalent ratio (LER) was >1 in 2021 and 2022. The SWC, leaf photosynthetic rate, LAI, and yield of watermelon in an agroforestry planting pattern were lower than when in a sole-cropping planting pattern. However, under the W1 irrigation strategy, the total soluble solids of the agroforestry planting pattern were 2.27% higher than those of the sole-cropping pattern, and the yield of the agroforestry planting pattern was 2.59% higher than that of the sole-cropping pattern. Under the W3 irrigation strategy, the average watermelon weight in the agroforestry planting pattern was 2.85% higher than that of the sole-cropping pattern. A path analysis showed that the agroforestry planting pattern can increase the yield by increasing soil water content, which is different from the sole-cropping pattern. (5) Conclusions: The results confirm that the apple-watermelon agroforestry planting pattern reduced watermelon yields. However, the LER of the agroforestry system was greater than 1.0. It is reasonable to plant watermelons in young apple forests.

...