Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters










Publication year range
1.
Bioresour Technol ; : 130977, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897546

ABSTRACT

This study examined the combination of activated carbon and magnetite with calcium peroxide in enhancing the anaerobic digestion (AD) performance of food waste (FW). The individual mechanisms of these two approaches were also clarified. The results indicated that AC/CaO2 achieved the highest specific methane yield of 434.4 mL/g VS, followed by Fe3O4/CaO2 (416.9 mL/g VS). Both were significantly higher than other groups (control, AC, Fe3O4, and CaO2 were 330.1, 341.4, 342.8, and 373.2 mL/g VS, respectively). Additionally, compared to Fe3O4/CaO2, AC/CaO2 further increased reactive oxygen species (ROS), thereby enhancing the hydrolytic acidification process. Simultaneously, the higher ROS levels of Fe3O4/CaO2 and AC/CaO2 promoted the formation of microbial aggregates and established a more robust enzymatic defense system and unique damage repair strategy. The research comparatively analyzed the synergistic mechanism of iron-based and carbon-based conductive materials with CaO2, providing new perspectives for optimizing the AD of FW.

2.
J Hazard Mater ; 470: 134300, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38631248

ABSTRACT

In this study, the cadmium (Cd)-tolerant Ensifer adhaerens strain NER9 with quorum sensing (QS) systems (responsible for N-acyl homoserine lactone (AHL) production) was characterized for QS system-mediated Cd immobilization and the underlying mechanisms involved. Whole-genome sequence analysis revealed that strain NER9 contains the QS SinI/R and TraI/R systems. Strains NER9 and the NER9∆sinI/R, NER9∆traI/R, and NER9∆sinI/R-traI/R mutants were constructed and compared for QS SinI/R and TraI/R system-mediated Cd immobilization in the solution and the mechanisms involved. After 24 h of incubation, strain NER9 significantly decreased the Cd concentration in the Cd-contaminated solution compared with the NER9∆sinI/R, NER9∆traI/R, and NER9∆sinI/R-traI/R mutants. The NER9∆sinI/R mutant had a greater impact on Cd immobilization and a lower impact on the activities of AHLs than did the NER9∆traI/R mutant. The NER9∆sinI/R mutant had significantly greater Cd concentrations and lower cell wall- and exopolysaccharide (EPS)-adsorbed Cd contents than did strain NER9. Furthermore, the NER9∆sinI/R mutant presented a decrease in the number of functional groups interacting with Cd, compared with strain NER9. These results suggested that the SinI/R system in strain NER9 contributed to Cd immobilization by mediating cell wall- and EPS-adsorption in Cd-containing solution.


Subject(s)
Cadmium , Quorum Sensing , Cadmium/chemistry , Rhizobiaceae/genetics , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/chemistry , Acyl-Butyrolactones/metabolism , Acyl-Butyrolactones/chemistry , Mutation , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biodegradation, Environmental
3.
Environ Sci Pollut Res Int ; 30(31): 76911-76922, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37247148

ABSTRACT

Metal-immobilizing bacteria play a critical role in metal accumulation in vegetables. However, little is known concerning the mechanisms involved in bacteria-induced reduced metal availability and uptake in vegetables. In this study, the impacts of metal-immobilizing Pseudomonas taiwanensis WRS8 on the plant biomass, Cd and Pb availability and uptake in two coriander (Coriandrum sativum L.) cultivars, and bacterial community structure were investigated in the polluted soil. Strain WRS8 increased the biomass of two coriander cultivars by 25-48% and reduced Cd and Pb contents in the edible tissues by 40-59% and available Cd and Pb contents in the rhizosphere soils by 11.1-15.2%, compared with the controls. Strain WRS8 significantly increased the pH values and relative abundances of the dominant populations of Sphingomonas, Pseudomonas, Gaiellales, Streptomyces, Frankiales, Bradyrhizobium, and Luteimonas, while strain WRS8 significantly decreased the relative abundances of the dominant populations of Gemmatimonadaceae, Nitrospira, Haliangium, Paenibacillus, Massilia, Bryobacter, and Rokubacteriales and the rare bacterial populations of Enterorhabdus, Roseburia, Luteibacter, and Planifilum in the rhizosphere soils, compared with the controls. Significantly negative correlations were observed between the available metal concentrations and the abundances of Pseudomonas, Luteimonas, Frankiales, and Planifilum. These results implied that strain WRS8 could affect the abundances of the dominant and rare bacterial populations involved in metal immobilization, resulting in increased pH values and decreased metal availability and uptake in the vegetables in the contaminated soil.


Subject(s)
Actinomycetales , Coriandrum , Metals, Heavy , Soil Pollutants , Cadmium/analysis , Lead , Soil Pollutants/analysis , Metals, Heavy/analysis , Pseudomonas , Vegetables , Bacteria , Soil/chemistry
4.
Front Psychol ; 13: 1007947, 2022.
Article in English | MEDLINE | ID: mdl-36389565

ABSTRACT

The survival and success of organizations increasingly depend on creativity. A Supervisor Creative Feedback Environment is of special value in enhancing team creativity, but few studies have explored the relationship between the supervisor creative feedback environment and creativity and how it affects creativity. Based on feedback intervention theory and triadic reciprocal determinism, this paper explores the process mechanism and boundary conditions of the supervisor creative feedback environment affecting team creativity from the perspectives of ambidextrous learning and team creative cognitive style. With 506 team members from 115 work teams in domestic enterprises as research samples, regression analysis was used to test the theoretical hypotheses. Feedback intervention, according to the feedback intervention theory, is a complicated process. There are various influencing factors, such as the feedback provider, means of feedback intervention, the content of the feedback information, situational factors, and the feedback recipients (Junwei, 2003). The leading creative feedback loop includes important feedback receiver's factors which are not mentioned above. Triadic reciprocal determinism holds that individual behavior is formed by the interaction and interconnection of individual, environment, and behavior. The two above-mentioned theories can explain why the leadership creative feedback environment can affect team creativity by influencing ambidextrous learning. The results also show that the feedback environment of supervisor creativity has positive effects on team creativity. Ambidextrous learning mediates the relation between supervisor creative feedback environments and team creativity. Team creative cognitive style has a positive moderating effect on the indirect relationship between a supervisor creative feedback environment and team creativity through ambidextrous learning. This study validates feedback intervention theory and triadic reciprocal determinism, expands the application of feedback environment factors in the research field of team creativity, provides a theoretical framework for the influence of the creative feedback environment on team creativity, and also provides theoretical support for managers to apply the management tool of a supervisor creative feedback environment to organizational context to improve team creativity. Based on the research results, this paper puts forward corresponding management suggestions from the aspect of creating a supervisor creative feedback environment, attaching importance to team ambidextrous learning, and making good use of creative cognitive style.

5.
J Environ Sci (China) ; 120: 84-93, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35623775

ABSTRACT

Biofilm-producing bacteria can decrease Cd uptake in vegetables, but mechanisms underlying this effect are poorly characterized. In this study, two mutant strains B12ΔYwcc and B12ΔSlrR were constructed from a biofilm-producing Bacillus subtilis strain B12. Then, the impacts of strain B12 and its high biofilm-producing mutant strain B12ΔYwcc and low biofilm-producing mutant strain B12ΔSlrR on Cd availability and uptake in Chinese cabbage and the related mechanisms were investigated in the Cd-polluted soil. Strain B12 and its mutants B12ΔYwcc and B12ΔSlrR increased the dry biomasses of edible tissues by 54%-130% compared with the controls. Strain B12 and its mutant B12ΔYwcc reduced the soil available Cd content by 36%-50% and root and edible tissue Cd contents by 23%-50% compared with the controls. Furthermore, the mutant strain B12ΔYwcc reduced the edible tissue Cd content by 40% and increased the polysaccharide content by 23%, invertase activity by 139%, and gene copies of the cumA by 4.5-fold, epsA by 7.1-fold, and cadA by 4.3-fold, which were involved in Cd adsorption in the rhizosphere soils, respectively, compared with strain B12. The polysaccharide content and cumA, epsA, and cadA gene copy numbers showed significantly reverse correlations with the available Cd content. Notably, the mutant strain B12ΔYwcc showed better ability to colonize the vegetable root surface than strain B12. These findings demonstrated that the biofilm-overproducing mutant strain B12ΔYwcc increased the polysaccharide production and Cd-immobilizing related cumA, epsA, and cadA gene copies, resulting in lower Cd availability and accumulation in Chinese cabbage in the Cd-polluted soil.


Subject(s)
Brassica , Soil Pollutants , Bacillus subtilis/genetics , Biofilms , Cadmium/analysis , Cadmium/toxicity , China , Polysaccharides , Soil , Soil Pollutants/analysis , Vegetables
6.
Platelets ; 33(8): 1132-1138, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-35348422

ABSTRACT

Triggering receptor expressed on myeloid cells (TREM) like transcript-1 (TLT-1) is a membrane protein receptor found in α-granules of megakaryocytes and platelets. Upon platelet activation TLT-1 is rapidly relocated to the surface of platelets. In plasma, a soluble form of TLT-1 (sTLT-1) is present. Plasma levels of sTLT-1 are significantly elevated in thrombotic diseases. In the present study, we investigated to whether TLT-1 reflects platelet activation in pregnant women with preeclampsia. We studied 30 preeclamptic patients who were matched with 30 normotensive pregnant women and 30 non-pregnant controls. Basal TLT-1, P-selectin, and CD63 expressions on platelets were analyzed with the use of flow-cytometry (FCM). Platelet reactivity was induced by thrombin receptor activation peptide and determined by FCM. Plasma concentrations of sTLT-1 and soluble P-selectin (sP-selectin) were measured by an enzyme-linked immunosorbent assay. Results show that basal platelet expression of TLT-1, P-selectin and CD63 were increased in women with preeclampsia (PE) compared with normotensive pregnant women (NP). Platelets from PE women and NP women were more responsive compared to from nonpregnant women controls (NC), and which was demonstrated by increased expression of TLT-1, P-selectin, and CD63 upon stimulation in vitro. Plasma concentration of sTLT-1 was greater in PE women compared to NP women and NC women. Plasma sP-selectin level was higher in pregnant women than in nonpregnant women, but there were no significant differences between PE and NP women. In summary, our results revealed that platelet activation is prominent in preeclampsia, TLT-1 reflects platelet activation and may be a useful indicator for preeclampsia.


Subject(s)
P-Selectin , Pre-Eclampsia , Blood Platelets/metabolism , Female , Humans , Myeloid Cells/metabolism , P-Selectin/metabolism , Peptides , Platelet Activation , Pregnancy , Receptors, Immunologic , Receptors, Thrombin/metabolism
7.
Med Sci Monit ; 28: e934569, 2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35082255

ABSTRACT

BACKGROUND The purpose of this study was to evaluate the predictive values of lipid level, inflammatory biomarkers, and echocardiographic parameters in late NVAF (nonvalvular atrial fibrillation) recurrence after RFA (radiofrequency ablation). MATERIAL AND METHODS This retrospective single-center study enrolled 263 patients with paroxysmal or persistent NVAF who underwent initial RFA from Jan 2017 to Jan 2019. The patients were divided into a Recurrent group (n=70) and a Nonrecurrent group (n=193). Univariate and multivariate logistic regression analyses were used for evaluating the predictive factors of late NVAF recurrence. Receiver operating characteristic (ROC) curves were constructed to assess the predictive performance and the optimum cut-off level of variables. RESULTS Late NVAF recurrence occurred in 70 patients (26.6%) after initial RFA within 12-month follow-up. Patients in the Recurrent group had significant higher NLR (neutrophil-to-lymphocyte ratio), hs-CRP (high-sensitivity C-reactive protein), LVEDD (left ventricular end-diastolic dimension), LVESD (left ventricular end-systolic dimension), and LAD (left atrial diameter) than those in the Nonrecurrent group (P<0.05). In multivariate analysis, increased NLR (HR=1.438, 95% CI: 1.036-1.995, P<0.05), hs-CRP (HR=1.137, 95% CI: 1.029-1.257, P<0.05) and LAD (HR=1.089, 95% CI: 1.036-1.146, P<0.05) were independent predictors of NVAF recurrence. The area under the curve (AUC) of NLR and hs-CRP was 0.603 (95% CI 0.525-0.681) and 0.584 (95% CI 0.501-0.666), respectively. The combination of NLR, hs-CRP, and LAD revealed an AUC of 0.684 (95% CI 0.611-0.757), with cut-off values of 2.33, 2.025 ng/L, and 44.5 mm, respectively. CONCLUSIONS The combination of preoperative NLR, hs-CRP, and LAD can predict late NVAF recurrence.


Subject(s)
Atrial Fibrillation/metabolism , Atrial Fibrillation/surgery , C-Reactive Protein/metabolism , Lymphocytes/metabolism , Neutrophils/metabolism , Radiofrequency Ablation/methods , Aged , Female , Heart Atria/anatomy & histology , Humans , Male , Middle Aged , Predictive Value of Tests , Recurrence , Retrospective Studies , Risk Assessment
8.
J Environ Manage ; 302(Pt A): 114016, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34717106

ABSTRACT

In this study, one mutant strain P29ΔsinR with increased biofilm production was constructed from a biofilm-producing Bacillus amyloliquefaciens strain P29. Then, the effect of strain P29 and its biofilm-overproducing mutant strain P29ΔsinR on Pb availability and accumulation in lettuce and the associated mechanisms were characterized in the Pb-contaminated soil. The live strains P29 and P29ΔsinR increased the dry masses of roots and edible tissues by 31-74% compared to the controls. The live strains P29 and P29ΔsinR reduced the Pb uptake in the roots by 36-52% and edible tissues by 24-43%, Pb bioconcentration factor by 36-52%, and rhizosphere soil available Pb content by 12-25%, respectively, compared to the controls. The live strains P29 and P29ΔsinR increased the pH, proportion of biofilm-producing bacteria by 46-154%, contents of polysaccharides by 99-139% and proteins by 32-57%, and gene relative abundances of epsC by 7.1-10.2-fold, tasA by 10.3-10.8-fold, and sipW by 6.5-26.1-fold, which were associated with biofilm formation and Pb adsorption in the rhizosphere soils, respectively, compared to the controls. Furthermore, the mutant strain P29ΔsinR showed higher ability to reduce Pb availability and uptake in lettuce and increase the pH, proportion of biofilm-producing bacteria, polysaccharide and protein contents, and relative abundances of these genes. These results showed that the biofilm-overproducing strain P29ΔsinR induced lower Pb availability and accumulation in the vegetable and more biofilm-producing bacteria, polysaccharide and protein production, and Pb-immobilizing related gene abundances in the Pb-contaminated soil.


Subject(s)
Bacillus amyloliquefaciens , Soil Pollutants , Bacillus amyloliquefaciens/genetics , Biofilms , Cadmium/analysis , Lead , Lactuca , Plant Roots/chemistry , Soil , Soil Pollutants/analysis
9.
Appl Environ Microbiol ; 87(24): e0155221, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34586903

ABSTRACT

Silicate mineral weathering (dissolution) plays important roles in soil formation and global biogeochemical cycling. In this study, a combination of genomics, transcriptomics, and genetics was used to identify the molecular basis of mineral weathering activity and acid tolerance in Pseudomonas azotoformans F77. Biotite was chosen as a silicate mineral to investigate mineral weathering. The genome of strain F77 was sequenced, and the genes significantly upregulated when grown in the presence of biotite included mineral weathering-related genes associated with gluconic acid metabolism, flagellar assembly, and pilus biosynthesis and acid tolerance-related genes associated with neutralizing component production, reducing power, and proton efflux. The biotite-weathering behaviors of strain F77 and its mutants that were created by deleting the tkt, tal, and gntP genes, which are involved in gluconic acid metabolism, and the potF, nuoF, and gdtO genes, which are involved in acid tolerance, were determined. The Fe and Al concentrations in the strain F77-inoculated medium increased 2.2- to 13.7-fold compared to the controls. The cell numbers of strain F77 increased over time, while the pH values in the medium ranged from 3.75 to 3.90 between 20 and 36 h of incubation. The release of Al and Fe was significantly reduced in the F77 Δtal, F77 ΔgntP, F77 ΔpotF, and F77 ΔnuoF mutants. Bacterial growth was significantly reduced in the presence of biotite in the F77 ΔpotF and F77 ΔnuoF mutants. Our results demonstrated the acid tolerance of strain F77 and suggested that multiple genes and metabolic pathways in strain F77 are involved in biotite weathering and acid tolerance during the mineral weathering process. IMPORTANCE Acid production and tolerance play important roles in effective and persistent mineral weathering in bacteria, although the molecular mechanisms governing acid production and acid tolerance in bacteria have not been fully elucidated. In this study, the molecular mechanisms underlying biotite (as a silicate mineral) weathering (dissolution) and acid tolerance of P. azotoformans F77 were characterized using genomics, transcriptomics, and genetics analyses. Our results showed that the genes and metabolic pathways for gluconic acid metabolism, flagellar assembly, and pilus biosynthesis may play important roles in mineral weathering by strain F77. Notably, the genes associated with neutralizing component production, reducing power, and proton efflux may be related to acid tolerance in strain F77. The expression of these acid production- and acid tolerance-related genes was observed to be increased by biotite in strain F77. Our findings may help to elucidate the molecular mechanisms governing mineral weathering and, especially, acid tolerance in mineral-weathering bacteria.


Subject(s)
Minerals/metabolism , Pseudomonas , Silicates/metabolism , Genomics , Phenotype , Protons , Pseudomonas/genetics , Pseudomonas/metabolism , Transcriptome
10.
J Environ Manage ; 300: 113745, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34547575

ABSTRACT

A large amount of waste activated sludge (WAS) and food waste (FW) are produced every year in China. Anaerobic co-digestion is considered to be an effective way to solve this problem. This study applied FW/WAS mixture as co-substrate to create different digestive environment, aiming to understand the mechanism of Fe3O4 particles in promoting AD performance. The results showed that the addition of Fe3O4 presented various performances when facing different digestive acidification stress brought by different mixing ratios of WAS and FW. Methanogenic pathways and microbial communities varied with substrates' properties. For group A (WAS mono-digestion), the acetoclastic methanogens dominated, 20 mg/g VS (according to the iron element) Fe3O4 could promote methane production, while 200 mg/g VS Fe3O4 would inhibit microbial activity. The promoted methane production by Fe3O4 was attributable to the promotion of sludge hydrolysis. For group B (WAS: FW = 1:0.5, based on VS addition, similarly hereinafter), Fe3O4 triggered direct interspecific electron transfer (DIET) between bacteria and methanogens. For group C (WAS: FW = 1:1), the hydrogenotrophic methanogens dominated, bacteria excreted more non-conductive polysaccharides in EPS to resist unfavorable environment, thereby it prevented their contact with Fe3O4 particles. So, it was difficult for Fe3O4 to trigger DIET and promote the digestive performance of batch experiments in such condition.


Subject(s)
Refuse Disposal , Sewage , Anaerobiosis , Bioreactors , Digestion , Food , Methane
11.
Environ Sci Pollut Res Int ; 28(38): 53353-53364, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34028693

ABSTRACT

The objective of this study was to investigate the effects of the microbial agent on the improvement of Pisha sandstone soil and find out an effective measure for the control of soil erosion in the Pisha sandstone area. Pisha sandstone containing the microbial agent composed of Bacillus halotolerans P75, Sinorhizobium meliloti D10, Bacillus megaterium H3, Bacillus subtilis HB01, and organic substrate was utilized to be the soil matrix for pot experiment, and then alfalfa, ryegrass, and caragana were planted, respectively. Effects of the microbial agent plus plants on the soil properties of Pisha sandstone were evaluated, and the results showed that the microbial agent plus plants significantly increased the organic matter content, alkali hydrolyzed nitrogen content, available phosphorus content, available potassium content, invertase activity, and urease activity. Meanwhile, inoculation with the microbial agent significantly promoted the growth of alfalfa, ryegrass, and caragana and also influenced the number of soil bacteria and the relative abundance of Proteobacteria, Bacteroidetes, Actinobacteria, and others. However, the effects of the microbial agent plus different plants on the soil properties and bacterial composition of Pisha sandstone were different, while the growth of different plants showed differences, suggesting that there was a different interaction between microbes and different plants in Pisha sandstone soil. In conclusion, the microbial agent plus plants could improve Pisha sandstone soil which could provide some theoretical and experimental references for soil erosion control in the Pisha sandstone area.


Subject(s)
Bacillus , Soil , Bacteria , Soil Microbiology
12.
Chemosphere ; 275: 130109, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33677267

ABSTRACT

In this study, an cadmium (Cd)-immobilizing and arginine decarboxylase-producing endophytic Sphingomonas sp. strain C40 obtained from the seeds of Oryza sativa Cliangyou 513 was characterized for its Cd availability and Cd uptake in host rice using hydroponic and soil experiments. The Cd concentration decreased by 51-95% compared to the control, while the spermidine concentration increased by 19-25% with Cd compared with no Cd in the strain C40-inoculated solution. Strain C40 decreased the above-ground tissue Cd content by 27-37% and increased spermine and spermidine contents by 28-67% and the expression levels of genes involved in spermine and spermidine production by 29-217% in rice roots compared to the controls. Furthermore, correlation analyses showed the significantly negative correlation between rice root spermine and spermidine contents and above-ground tissue Cd content. In the Cd-added soil, strain C40 promoted the rice biomass by 29-36% and decreased rice root, above-ground tissue, and grain Cd contents by 18, 16, and 33% and total grain Cd uptake by 14% compared with the controls at the maturity stage. Strain C40 decreased the exchangeable Cd content by 27% and increased the Fe and Mn oxides-bound Cd content by 45% in the rice rhizosphere soils at the maturity stage compared with the controls. These results suggested that the endophytic bacterial strain C40 increased rice root polyamine production and their related gene expression and the transformation of available Cd to unavailable Cd, leading to reduced Cd accumulation and translocation from the rice roots to grains.


Subject(s)
Oryza , Soil Pollutants , Sphingomonas , Cadmium/analysis , Carboxy-Lyases , Oryza/genetics , Plant Roots/chemistry , Soil , Soil Pollutants/analysis , Sphingomonas/genetics
13.
Environ Pollut ; 268(Pt A): 115850, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33143980

ABSTRACT

Metal-resistant bacteria can reduce Cd accumulation in plants, but mechanisms underlying this effect are poorly understood. In this study, a highly effective Cd-resistant WRS8 strain was obtained from the rhizoshere soil of Triticum aestivum L. Yangmai-13 and identified as Pseudomonas taiwanensis based on 16S rRNA gene sequence analysis. Strain WRS8 was investigated for its effects on Cd availability and wheat tissue Cd contents and the related mechanisms using a hydroponic culture experiment. In strain WRS8-inoculated solution, the Cd concentration reduced and the pH and cell-adsorbed Cd increased with time. Strain WRS8 increased the wheat root and above-ground tissue dry weights by 11-36% compared to the controls. In strain WRS8-inoculated wheat plants, the Cd contents of the roots and above-ground tissues decreased by 78-85% and 88-94% and the Cd bioconcentration and translocation factors decreased by 78-85% and 46-58% at days 3 and 10, respectively, compared with the controls. The root surface-adsorbed Cd contents increased by 99-121% in the WRS8 strain-inoculated wheat plants at days 3 and 10 compared to the controls. Furthermore, strain WRS8 colonized the wheat root surfaces and interiors and reduced the expression levels of the LCT1 and HMA2 genes involved in Cd accumulation and transport in wheat roots by 46% and 30%, respectively, compared to the controls. In the Cd-contaminated soils, strain WRS8 significantly reduced the available Cd content by 20-24% and increased the pH compared to the controls. These findings showed the important role of strain WRS8 in reducing solution and soil Cd availability and suggested that strain WRS8 reduced the wheat tissue Cd accumulation by increasing root surface Cd adsorption and decreasing wheat root Cd uptake and transport-related gene expression and may provide a new and effective wheat rhizobacteria-enhanced approach for reducing wheat Cd uptake in Cd-polluted environments.


Subject(s)
Cadmium , Soil Pollutants , Adsorption , Cadmium/analysis , Gene Expression , Pseudomonas , RNA, Ribosomal, 16S , Soil , Soil Pollutants/analysis , Triticum
14.
Ecotoxicol Environ Saf ; 206: 111189, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32858328

ABSTRACT

In this study, a highly effective combined biochar and metal-immobilizing bacteria (Bacillus megaterium H3 and Serratia liquefaciens CL-1) (BHC) was characterized for its effects on solution Pb and Cd immobilization and edible tissue biomass and Pb and Cd accumulation in Chinese cabbages and radishes and the mechanisms involved in metal-polluted soils. In the metal-containing solution treated with BHC, the Pb and Cd concentrations decreased, while the pH and cell numbers of strains H3 and CL-1 increased over time. BHC significantly increased the edible tissue dry weight by 17-34% and reduced the edible tissue Pb (0.32-0.46 mg kg-1) and Cd (0.16 mg kg-1) contents of the vegetables by 24-45%. In the vegetable rhizosphere soils, BHC significantly decreased the acid-soluble Pb (1.81-2.21 mg kg-1) and Cd (0.40-0.48 mg kg-1) contents by 26-47% and increased the reducible Pb (18.2-18.8 mg kg-1) and Cd (0.38-0.39 mg kg-1) contents by 10-111%; while BHC also significantly increased the pH, urease activity by 115-169%, amorphous Fe oxides content by 12-19%, and relative abundance of gene copy numbers of Fe- and Mn-oxidising Leptothrix species by 28-73% compared with the controls. These results suggested that BHC decreased edible tissue metal uptake of the vegetables by increasing pH, urease activity, amorphous Fe oxides, and Leptothrix species abundance in polluted soil. These results may provide an effective and eco-friendly way for metal remediation and reducing metal uptake in vegetables by using combined biochar and metal-immobilizing bacteria in polluted soils.


Subject(s)
Charcoal/chemistry , Ferric Compounds/analysis , Leptothrix/growth & development , Metals, Heavy/analysis , Serratia liquefaciens/growth & development , Soil Pollutants/analysis , Vegetables/chemistry , Cadmium/analysis , Lead/analysis , Leptothrix/genetics , Leptothrix/metabolism , Metals, Heavy/metabolism , Rhizosphere , Soil/chemistry , Soil Microbiology , Soil Pollutants/metabolism , Vegetables/metabolism
15.
Ecotoxicol Environ Saf ; 203: 111017, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32678748

ABSTRACT

In this study, the effect of two metal-immobilizing bacterial strains, Serratia liquefaciens CL-1 and Bacillus thuringiensis X30, on the availability of Cd and Pb and the metal accumulation in potato tubers, as well as the underlying mechanisms in metal-contaminated soils were characterized. Moreover, the impacts of the strains on metal immobilization, pH, and NH4+ concentration in metal-contaminated soil solutions were evaluated. Strains CL-1 and X30 increased tuber dry weight by 46% and 40%, reduced tuber Cd and Pb contents by 68-83% and 42-47%, and decreased the Cd and Pb translocation factors by 61-70% and 30-34%, respectively, compared to the controls. Strains CL-1 and X30 decreased the available Cd and Pb contents by 52-67% and 30-44% and increased the NH4+ content by 55% and 31%, pH, urease activity by 70% and 41%, and relative abundance of ureC gene copies by 37% and 20% in the rhizosphere soils, respectively, compared with the controls. Reduced Cd and Pb concentrations and increased pH and NH4+ concentration were found in the bacteria-inoculated soil solution compared to the controls. These results suggested that the strains reduced tuber metal uptake through decreasing the metal availability and increasing the pH, ureC gene relative abundance and urease activity as well as decreasing the metal translocation from the leaves to tubers. These results may provide an effective metal-immobilizing bacteria (especially strain CL-1)-enhanced approach to reduce metal uptake of potato tubers in metal-polluted soils.


Subject(s)
Bacillus thuringiensis/metabolism , Metals, Heavy/metabolism , Serratia liquefaciens/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Solanum tuberosum/growth & development , Urease/metabolism , Biodegradation, Environmental , Biomass , Cadmium/metabolism , Lead/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Rhizosphere , Soil/chemistry , Soil Pollutants/analysis , Solanum tuberosum/metabolism , Species Specificity
16.
Sci Total Environ ; 740: 139972, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-32559530

ABSTRACT

Biochar and metal-immobilizing bacteria play an important role in reducing the metal uptake of plants. However, little research has characterized the synergistic effects of biochar and metal-immobilizing bacteria on reducing metal accumulation in wheat grains and the underlying mechanisms. In this study, the effects of biochar, metal-immobilizing Serratia liquefaciens CL-1, and biochar + CL-1 on grain Cd and Pb uptake in wheat (Triticum aestivum L. Sumai-188) and the mechanisms involved under field conditions were characterized. Biochar, CL-1, and biochar + CL-1 reduced wheat grain Cd and Pb contents by 17-25%, 24-27%, and 45-55% and reduced the available Cd and Pb contents in the rhizosphere soils by 14-33%, 13-38%, and 27-57%, respectively, compared with the controls. Biochar, CL-1, and biochar + CL-1 increased soil pH values. CL-1 and biochar + CL-1 increased putrescine contents by 93% and 150% and bacterial aguA gene copy numbers by 30% and 44%, respectively, in the rhizosphere soils compared to the controls based on qPCR analysis. Furthermore, biochar + CL-1 reduced the Cd and Pb bioconcentration and translocation factors by 23-33% compared to the controls. CL-1 significantly increased the pH and reduced water-soluble Cd and Pb concentrations (18-44%) in the metal-contaminated soil solution compared to the controls. The results showed a synergistic effect of biochar and CL-1 on the reduction of Cd and Pb accumulation in wheat grains. These findings suggested that biochar plus CL-1 reduced wheat grain metal uptake by reducing metal availability and translocation from the roots to grains and increasing pH levels, putrescine production, and aguA gene abundance, and they highlight the possibility of developing an effective technique for reducing the metal uptake of wheat grains using biochar plus metal-immobilizing bacteria in metal-contaminated soils.


Subject(s)
Serratia liquefaciens , Soil Pollutants/analysis , Cadmium/analysis , Charcoal , Metals , Soil , Triticum
17.
Appl Environ Microbiol ; 86(7)2020 03 18.
Article in English | MEDLINE | ID: mdl-31953343

ABSTRACT

In this study, the mineral-weathering bacterium Pseudomonas azotoformans F77, which was isolated from the soil of a debris flow area, was evaluated for its weathering activity under direct contact with biotite or without contact. Then, biotite-weathering behaviors of strain F77, mutants that had been created by deleting the gcd and adh genes (which are involved in gluconic acid metabolism and pilus formation, respectively), and the double mutant F77ΔgcdΔadh were compared. The relative gene expression levels of F77 and its mutants F77Δgcd and F77Δadh were also analyzed in the presence of biotite. Direct contact with biotite increased Fe and Al release from the mineral in the presence of F77. All strains had similar abilities to release Fe and Al from the mineral except for F77Δgcd and F77Δadh Mobilized Fe and Al concentrations were decreased by up to 72, 26, and 87% in the presence of F77Δgcd, F77Δadh, and F77ΔgcdΔadh, respectively, compared to levels observed in the presence of F77 during the mineral-weathering process. Gluconic acid production was decreased for F77Δgcd and F77ΔgcdΔadh, while decreased cell attachment on the mineral surface was observed for F77Δadh, compared to findings for F77. The F77 genes involved in pilus formation and gluconic acid metabolism showed increased expression levels in the presence of biotite. The results of this study showed important roles for the genes involved in gluconic acid metabolism and pilus formation in mineral weathering by F77 and demonstrated the distinctive effect of these genes on mineral weathering by F77.IMPORTANCE Bacteria play important roles in mineral weathering and soil formation, although the molecular mechanisms underlying the interactions between bacteria and silicate minerals are poorly understood. In this study, the interactions between biotite and the highly effective mineral-weathering bacterium P. azotoformans F77 were characterized. Our results showed that the genes involved in gluconic acid metabolism and pilus formation play important roles in mineral weathering by F77. The presence of biotite could promote the expression of these genes in F77, and a distinctive effect of these genes on mineral weathering by F77 was observed in this study. Our results provide new knowledge and promote better understanding regarding the interaction between silicate minerals and mineral-weathering bacteria, as well as the molecular mechanisms involved in these processes.


Subject(s)
Aluminum Silicates/metabolism , Ferrous Compounds/metabolism , Minerals/metabolism , Pseudomonas/metabolism , Soil Microbiology
18.
Environ Pollut ; 259: 113832, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31918131

ABSTRACT

In this study, an arsenic (As)-resistant facultative endophytic bacterial strain, F2, was isolated from the root of Oryza sativa Longliangyou Huazhan and identified as Serratia liquefaciens according to 16S rRNA gene sequence analysis. Strain F2 was characterized for i) its impacts on As immobilization in solution and rice tissue As accumulation, and ii) the mechanisms involved for different levels of As-pollution in soils. In strain F2-inoculated culture medium, the concentration of As decreased, while the pH, cell growth, and cell-immobilized As significantly increased over time. Grain As content reduced by between 23 and 36% in strain F2-inoculated rice plants in comparison to the control. Available As content decreased by between 28 and 52%, but unavailable As content increased by between 27 and 46% in the strain F2-inoculated soil when compared with the controls. Moreover, the strain decreased the As translocation factor by between 34 and 46%, but increased the As concentration by between 24 and 70% in Fe plaque on the rice root surfaces in comparison to the controls. These results suggested that strain F2 decreased the rice grain As uptake by i) decreasing available As in soil, ii) increasing rice root surface As adsorption, and iii) decreasing As translocation from the roots to grains. Our findings may provide a new rice-derived facultative endophytic bacteria-assisted approach for decreasing the As uptake to rice grains in As-polluted soils.


Subject(s)
Arsenic , Oryza , Serratia liquefaciens , Soil Pollutants , Edible Grain , Plant Roots , RNA, Ribosomal, 16S , Soil
19.
J Basic Microbiol ; 60(4): 362-371, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31840843

ABSTRACT

Bacteria play important roles in mineral weathering and soil formation. However, little is known regarding the interactions between biotite and Arthrobacter strains. In this study, the mineral-mineral activities of the Arthrobacter pascens F74 isolated from a weathered rock surface were evaluated for its weathering behavior under direct contact and no contact with biotite. No contact was obtained by using dialysis bags. When directly in contact with biotite, Al and Fe concentrations increased by 9- to 47-fold compared with the controls in the presence of strain F74. Furthermore, strain F74 increased mobilized Al by 106% to 175% and Fe by 29% to 123% under direct contact than under no contact conditions. During biotite dissolution, significantly higher cell numbers and lower pH in the culture medium were observed in the presence of strain F74 under direct contact conditions than under no contact conditions. Significantly higher gluconic acid concentration and glucose dehydrogenase activity were found under direct contact conditions than under no contact and no biotite conditions. Scanning electron microscopy analysis showed cell adhesion on the biotite surface. These results demonstrated that strain F74 behaved differently with respect to biotite-weathering effectiveness and mechanisms under different contact conditions. The results also suggested that direct contact between biotite and strain F74 was important for the production of gluconic acid, cell adhesion on the mineral surface, and the mineral dissolution of the strain.


Subject(s)
Aluminum Silicates/chemistry , Arthrobacter/metabolism , Ferrous Compounds/chemistry , Gluconates/analysis , Minerals/chemistry , Aluminum/chemistry , Glucose 1-Dehydrogenase/metabolism , Hydrogen-Ion Concentration , Iron/chemistry , Microscopy, Electron, Scanning , Soil Microbiology
20.
Oncol Res ; 27(8): 879-887, 2019 Aug 08.
Article in English | MEDLINE | ID: mdl-30982489

ABSTRACT

An increasing number of studies have demonstrated that microRNAs (miRNAs) may play key roles in various cancer carcinogenesis and progression, including non-small cell lung cancer (NSCLC). However, the expressions, roles, and mechanisms of miR-510 in NSCLC have, up to now, been largely undefined. In vivo assay showed that miR-510 was upregulated in NSCLC tissues compared with that in adjacent nontumor lung tissues. miR-510 expression was significantly correlated with TNM stage and lymph node metastasis. In vitro assay indicated that expressions of miR-510 were also increased in NSCLC cell lines. Downregulation of miR-510 suppressed NSCLC cell proliferation and invasion in vitro. We identified SRC kinase signaling inhibitor 1 (SRCIN1) as a direct target gene of miR-510 in NSCLC. Expression of SRCIN1 was downregulated in lung cancer cells and negatively correlated with miR-510 expression in tumor tissues. Downregulation of SRCIN1, leading to inhibition of miR-510 expression, reversed cell proliferation and invasion in NSCLC cells. These results showed that miR-510 acted as an oncogenic miRNA in NSCLC, partly by targeting SRCIN1, suggesting that miR-510 can be a potential approach for the treatment of patients with malignant lung cancer.


Subject(s)
Adaptor Proteins, Vesicular Transport/genetics , Carcinoma, Non-Small-Cell Lung/genetics , MicroRNAs/genetics , A549 Cells , Aged , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Lymphatic Metastasis/genetics , Lymphatic Metastasis/pathology , Male , Middle Aged , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...