Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 948349, 2022.
Article in English | MEDLINE | ID: mdl-36119593

ABSTRACT

Establishment of vegetable soybean (edamame) [Glycine max (L.) Merr.] germplasms has been highly valued in Asia and the United States owing to the increasing market demand for edamame. The idea of core collection (CC) is to shorten the breeding program so as to improve the availability of germplasm resources. However, multidimensional phenotypes typically are highly correlated and have different levels of missing rate, often failing to capture the underlying pattern of germplasms and select CC precisely. These are commonly observed on correlated samples. To overcome such scenario, we introduced the "multiple imputation" (MI) method to iteratively impute missing phenotypes for 46 morphological traits and jointly analyzed high-dimensional imputed missing phenotypes (EC impu ) to explore population structure and relatedness among 200 Taiwanese vegetable soybean accessions. An advanced maximization strategy with a heuristic algorithm and PowerCore was used to evaluate the morphological diversity among the EC impu . In total, 36 accessions (denoted as CC impu ) were efficiently selected representing high diversity and the entire coverage of the EC impu . Only 4 (8.7%) traits showed slightly significant differences between the CC impu and EC impu . Compared to the EC impu , 96% traits retained all characteristics or had a slight diversity loss in the CC impu . The CC impu exhibited a small percentage of significant mean difference (4.51%), and large coincidence rate (98.1%), variable rate (138.76%), and coverage (close to 100%), indicating the representativeness of the EC impu . We noted that the CC impu outperformed the CC raw in evaluation properties, suggesting that the multiple phenotype imputation method has the potential to deal with missing phenotypes in correlated samples efficiently and reliably without re-phenotyping accessions. Our results illustrated a significant role of imputed missing phenotypes in support of the MI-based framework for plant-breeding programs.

2.
Front Plant Sci ; 11: 612106, 2020.
Article in English | MEDLINE | ID: mdl-33510755

ABSTRACT

Vegetable soybeans [Glycine max (L.) Merr.] have characteristics of larger seeds, less beany flavor, tender texture, and green-colored pods and seeds. Rich in nutrients, vegetable soybeans are conducive to preventing neurological disease. Due to the change of dietary habits and increasing health awareness, the demand for vegetable soybeans has increased. To conserve vegetable soybean germplasms in Taiwan, we built a core collection of vegetable soybeans, with minimum accessions, minimum redundancy, and maximum representation. Initially, a total of 213 vegetable soybean germplasms and 29 morphological traits were used to construct the core collection. After redundant accessions were removed, 200 accessions were retained as the entire collection, which was grouped into nine clusters. Here, we developed a modified Roger's distance for mixed quantitative-qualitative phenotypes to select 30 accessions (denoted as the core collection) that had a maximum pairwise genetic distance. No significant differences were observed in all phenotypic traits (p-values > 0.05) between the entire and the core collections, except plant height. Compared to the entire collection, we found that most traits retained diversities, but seven traits were slightly lost (ranged from 2 to 9%) in the core collection. The core collection demonstrated a small percentage of significant mean difference (3.45%) and a large coincidence rate (97.70%), indicating representativeness of the entire collection. Furthermore, large values in variable rate (149.80%) and coverage (92.5%) were in line with high diversity retained in the core collection. The results suggested that phenotype-based core collection can retain diversity and genetic variability of vegetable soybeans, providing a basis for further research and breeding programs.

SELECTION OF CITATIONS
SEARCH DETAIL