Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 255: 128111, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37979744

ABSTRACT

African swine fever (ASF), caused by the African swine fever virus (ASFV), is now widespread in many countries and severely affects the commercial rearing of swine. Rapid and early diagnosis is crucial for the prevention of ASF. ASFV mature virions comprise the inner envelope protein, p22, making it an excellent candidate for the serological diagnosis and surveillance of ASF. In this study, the prokaryotic-expressed p22 recombinant protein was prepared and purified for immunization in mice. Four monoclonal antibodies (mAbs) were identified using hybridoma cell fusion, clone purification, and immunological assays. The epitopes of mAbs 14G1 and 22D8 were further defined by alanine-scanning mutagenesis. Our results showed that amino acids C39, K40, V41, D42, C45, G48, E49, and C51 directly bound to 14G1, while the key amino acid epitope for 22D8 included K161, Y162, G163, D165, H166, I167, and I168. Homologous and structural analysis revealed that these sites were highly conserved across Asian and European ASFV strains, and the amino acids identified were located on the surface of p22. Thus, our study contributes to a better understanding of the antigenicity of the ASFV p22 protein, and the results could facilitate the prevention and control of ASF.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine , Animals , Mice , African Swine Fever Virus/genetics , African Swine Fever/epidemiology , African Swine Fever/prevention & control , Epitope Mapping , Antibodies, Monoclonal , Antibodies, Viral , Epitopes , Amino Acids
2.
J Virol ; 97(9): e0056923, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37607059

ABSTRACT

Proinflammatory factors play important roles in the pathogenesis of African swine fever virus (ASFV), which is the causative agent of African swine fever (ASF), a highly contagious and severe hemorrhagic disease. Efforts in the prevention and treatment of ASF have been severely hindered by knowledge gaps in viral proteins responsible for modulating host antiviral responses. In this study, we identified the I10L protein (pI10L) of ASFV as a potential inhibitor of the TNF-α- and IL-1ß-triggered NF-κB signaling pathway, the most canonical and important part of host inflammatory responses. The ectopically expressed pI10L remarkably suppressed the activation of NF-κB signaling in HEK293T and PK-15 cells. The ASFV mutant lacking the I10L gene (ASFVΔI10L) induced higher levels of proinflammatory cytokines production in primary porcine alveolar macrophages (PAMs) compared with its parental ASFV HLJ/2018 strain (ASFVWT). Mechanistic studies suggest that pI10L inhibits IKKß phosphorylation by reducing the K63-linked ubiquitination of NEMO, which is necessary for the activation of IKKß. Morever, pI10L interacts with the kinase domain of IKKß through its N-terminus, and consequently blocks the association of IKKß with its substrates IκBα and p65, leading to reduced phosphorylation. In addition, the nuclear translocation efficiency of p65 was also altered by pI10L. Further biochemical evidence supported that the amino acids 1-102 on pI10L were essential for the pI10L-mediated suppression of the NF-κB signaling pathway. The present study clarifies the immunosuppressive activity of pI10L, and provides novel insights into the understanding of ASFV pathobiology and the development of vaccines against ASF. IMPORTANCE African swine fever (ASF), caused by the African swine fever virus (ASFV), is now widespread in many countries and severely affects the commercial rearing of swine. To date, few safe and effective vaccines or antiviral strategies have been marketed due to large gaps in knowledge regarding ASFV pathobiology and immune evasion mechanisms. In this study, we deciphered the important role of the ASFV-encoded I10L protein in the TNF-α-/IL-1ß-triggered NF-κB signaling pathway. This study provides novel insights into the pathogenesis of ASFV and thus contributes to the development of vaccines against ASF.

3.
Animals (Basel) ; 12(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36359059

ABSTRACT

African swine fever (ASF), caused by African swine fever virus (ASFV), is a highly contagious and fatal disease found in swine. However, the viral proteins and mechanisms responsible for immune evasion are poorly understood, which has severely hindered the development of vaccines. This review mainly focuses on studies involving the innate antiviral immune response of the host and summarizes the latest studies on ASFV genes involved in interferon (IFN) signaling and inflammatory responses. We analyzed the effects of candidate viral proteins on ASFV infection, replication and pathogenicity and identified potential molecular targets for novel ASFV vaccines. These efforts will contribute to the construction of novel vaccines and wonder therapeutics for ASF.

4.
Proc Natl Acad Sci U S A ; 119(43): e2207280119, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36252040

ABSTRACT

The current view of nucleic acid-mediated innate immunity is that binding of intracellular sensors to nucleic acids is sufficient for their activation. Here, we report that endocytosis of virus or foreign DNA initiates a priming signal for the DNA sensor cyclic GMP-AMP synthase (cGAS)-mediated innate immune response. Mechanistically, viral infection or foreign DNA transfection triggers recruitment of the spleen tyrosine kinase (SYK) and cGAS to the endosomal vacuolar H+ pump (V-ATPase), where SYK is activated and then phosphorylates human cGASY214/215 (mouse cGasY200/201) to prime its activation. Upon binding to DNA, the primed cGAS initiates robust cGAMP production and mediator of IRF3 activation/stimulator of interferon genes-dependent innate immune response. Consistently, blocking the V-ATPase-SYK axis impairs DNA virus- and transfected DNA-induced cGAMP production and expression of antiviral genes. Our findings reveal that V-ATPase-SYK-mediated tyrosine phosphorylation of cGAS following endocytosis of virus or other cargos serves as a priming signal for cGAS activation and innate immune response.


Subject(s)
Endocytosis , Immunity, Innate , Nucleotidyltransferases , Syk Kinase , Vacuolar Proton-Translocating ATPases , Animals , Humans , Mice , DNA , Interferons/metabolism , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , Signal Transduction/genetics , Syk Kinase/metabolism , Tyrosine , Vacuolar Proton-Translocating ATPases/metabolism
5.
Cell Mol Immunol ; 18(5): 1186-1196, 2021 05.
Article in English | MEDLINE | ID: mdl-33785841

ABSTRACT

Mitochondrial stress (mitostress) triggered by viral infection or mitochondrial dysfunction causes the release of mitochondrial DNA (mtDNA) into the cytosol and activates the cGAS-mediated innate immune response. The regulation of mtDNA release upon mitostress remains uncharacterized. Here, we identified mitochondria-associated vaccinia virus-related kinase 2 (VRK2) as a key regulator of this process. VRK2 deficiency inhibited the induction of antiviral genes and caused earlier and higher mortality in mice after viral infection. Upon viral infection, VRK2 associated with voltage-dependent anion channel 1 (VDAC1) and promoted VDAC1 oligomerization and mtDNA release, leading to the cGAS-mediated innate immune response. VRK2 was also required for mtDNA release and cGAS-mediated innate immunity triggered by nonviral factors that cause Ca2+ overload but was not required for the cytosolic nucleic acid-triggered innate immune response. Thus, VRK2 plays a crucial role in the mtDNA-triggered innate immune response and may be a potential therapeutic target for infectious and autoimmune diseases associated with mtDNA release.


Subject(s)
Antiviral Agents/metabolism , DNA, Mitochondrial/metabolism , Immunity, Innate , Mitochondria/metabolism , Protein Serine-Threonine Kinases/metabolism , Stress, Physiological , Animals , Cell Line, Tumor , HEK293 Cells , Humans , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/deficiency , Voltage-Dependent Anion Channel 1/metabolism
6.
Cell Res ; 29(3): 193-205, 2019 03.
Article in English | MEDLINE | ID: mdl-30651583

ABSTRACT

The mechanisms on metabolic regulation of immune responses are still elusive. We show here that viral infection induces immediate-early NF-κB activation independent of viral nucleic acid-triggered signaling, which triggers a rapid transcriptional induction of bile acid (BA) transporter and rate-limiting biosynthesis enzymes as well as accumulation of intracellular BAs in divergent cell types. The accumulated intracellular BAs activate SRC kinase via the TGR5-GRK-ß-arrestin axis, which mediates tyrosine phosphorylation of multiple antiviral signaling components including RIG-I, VISA/MAVS, MITA/STING, TBK1 and IRF3. The tyrosine phosphorylation of these components by SRC conditions for efficient innate antiviral immune response. Consistently, TGR5 deficiency impairs innate antiviral immunity, whereas BAs exhibit potent antiviral activity in wild-type but not TGR5-deficient cells and mice. Our findings reveal an intrinsic and universal role of intracellular BA metabolism in innate antiviral immunity.


Subject(s)
Bile Acids and Salts/metabolism , Herpes Simplex/immunology , Herpesvirus 1, Human/immunology , Proto-Oncogene Proteins pp60(c-src)/metabolism , Receptors, G-Protein-Coupled/metabolism , beta-Arrestins/metabolism , Animals , Carrier Proteins/metabolism , Cell Line , HEK293 Cells , Herpesvirus 1, Human/metabolism , Humans , Immunity, Innate/immunology , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/metabolism , Phosphorylation/physiology , Receptors, G-Protein-Coupled/genetics
8.
J Virol ; 90(22): 10271-10283, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27605672

ABSTRACT

The mitogen-activated protein kinase kinase/extracellular regulated kinase (MEK1/2/ERK1/2) cascade is involved in the replication of several members of the Flaviviridae family, including hepatitis C virus and dengue virus. The effects of the cascade on the replication of classical swine fever virus (CSFV), a fatal pestivirus of pigs, remain unknown. In this study, MEK2 was identified as a novel binding partner of the E2 protein of CSFV using yeast two-hybrid screening. The E2-MEK2 interaction was confirmed by glutathione S-transferase pulldown, coimmunoprecipitation, and laser confocal microscopy assays. The C termini of E2 (amino acids [aa] 890 to 1053) and MEK2 (aa 266 to 400) were mapped to be crucial for the interaction. Overexpression of MEK2 significantly promoted the replication of CSFV, whereas knockdown of MEK2 by lentivirus-mediated small hairpin RNAs dramatically inhibited CSFV replication. In addition, CSFV infection induced a biphasic activation of ERK1/2, the downstream signaling molecules of MEK2. Furthermore, the replication of CSFV was markedly inhibited in PK-15 cells treated with U0126, a specific inhibitor for MEK1/2/ERK1/2, whereas MEK2 did not affect CSFV replication after blocking the interferon-induced Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway by ruxolitinib, a JAK-STAT-specific inhibitor. Taken together, our results indicate that MEK2 positively regulates the replication of CSFV through inhibiting the JAK-STAT signaling pathway. IMPORTANCE Mitogen-activated protein kinase kinase 2 (MEK2) is a kinase that operates immediately upstream of extracellular regulated kinase 1/2 (ERK1/2) and links to Raf and ERK via phosphorylation. Currently, little is known about the role of MEK2 in the replication of classical swine fever virus (CSFV), a devastating porcine pestivirus. Here, we investigated the roles of MEK2 and the MEK2/ERK1/2 cascade in the growth of CSFV for the first time. We show that MEK2 positively regulates CSFV replication. Notably, we demonstrate that MEK2 promotes CSFV replication through inhibiting the interferon-induced JAK-STAT signaling pathway, a key antiviral pathway involved in innate immunity. Our work reveals a novel role of MEK2 in CSFV infection and sheds light on the molecular basis by which pestiviruses interact with the host cell.

9.
Dalton Trans ; 45(13): 5676-88, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-26927027

ABSTRACT

A series of new salts [Mn(5-MeO-sal-N-1,5,8,12)]Y (Y = ClO4 for 1, Y = BF4 for 2, Y = NO3 for 3 and Y = CF3SO3 for 4) based on the six-coordinated mononuclear manganese(iii) Schiff-base complex cation [Mn(5-MeO-sal-N-1,5,8,12)](+), has been investigated to determine the impact of counter anion effects, intramolecular ligand distortion and intermolecular supramolecular structures on the spin crossover (SCO) behavior. The SCO in salt 1 has resulted in a crystallographic observation of the coexistence of high-spin (HS, S = 2) and low-spin (LS, S = 1) manganese(iii) complex cations in equal proportions around 100 K. At room temperature, the two crystallographically distinct manganese centers are both close to the complete HS state. Only one of the two slightly different units undergoes SCO in the temperature range 300-180 K, whereas the other remains in the HS state down to 20 K. For salts 2 and 3, crystal structural analysis indicates change in the anion from ClO4(-) to BF4(-) and NO3(-) was led to the close arrangement of the cations and the stacking between phenyl groups from the ligands. With CF3SO3(-) as the counterion, although the cations and the anions separate clearly in one direction, the close arrangement of cations in other directions precludes the spin transformation of the Mn(iii) cations. Magnetic measurements on 2-4 indicate that the manganese(iii) complex cations remain in the HS state in the temperature range 2-300 K.

10.
Viruses ; 7(8): 4563-81, 2015 Aug 10.
Article in English | MEDLINE | ID: mdl-26266418

ABSTRACT

The NS5A protein of classical swine fever virus (CSFV) is involved in the RNA synthesis and viral replication. However, the NS5A-interacting cellular proteins engaged in the CSFV replication are poorly defined. Using yeast two-hybrid screen, the eukaryotic elongation factor 1A (eEF1A) was identified to be an NS5A-binding partner. The NS5A-eEF1A interaction was confirmed by coimmunoprecipitation, glutathione S-transferase (GST) pulldown and laser confocal microscopy assays. The domain I of eEF1A was shown to be critical for the NS5A-eEF1A interaction. Overexpression of eEF1A suppressed the CSFV growth markedly, and conversely, knockdown of eEF1A enhanced the CSFV replication significantly. Furthermore, eEF1A, as well as NS5A, was found to reduce the translation efficiency of the internal ribosome entry site (IRES) of CSFV in a dose-dependent manner, as demonstrated by luciferase reporter assay. Streptavidin pulldown assay revealed that eEF1A could bind to the CSFV IRES. Collectively, our results suggest that eEF1A interacts with NS5A and negatively regulates the growth of CSFV.


Subject(s)
Classical Swine Fever Virus/immunology , Classical Swine Fever Virus/physiology , Eukaryotic Initiation Factor-1/metabolism , Host-Pathogen Interactions , Viral Nonstructural Proteins/metabolism , Virus Replication , Animals , Cell Line , Centrifugation , Gene Expression , Gene Knockdown Techniques , Immunoprecipitation , Microscopy, Confocal , Protein Binding , Protein Interaction Mapping , Swine , Two-Hybrid System Techniques
11.
J Virol ; 89(16): 8510-24, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26041303

ABSTRACT

UNLABELLED: The E2 protein of classical swine fever virus (CSFV) is an envelope glycoprotein that is involved in virus attachment and entry. To date, the E2-interacting cellular proteins and their involvement in viral replication have been poorly documented. In this study, thioredoxin 2 (Trx2) was identified to be a novel E2-interacting partner using yeast two-hybrid screening from a porcine macrophage cDNA library. Trx2 is a mitochondrion-associated protein that participates in diverse cellular events. The Trx2-E2 interaction was further confirmed by glutathione S-transferase (GST) pulldown, in situ proximity ligation, and laser confocal assays. The thioredoxin domain of Trx2 and the asparagine at position 37 (N37) in the E2 protein were shown to be critical for the interaction. Silencing of the Trx2 expression in PK-15 cells by small interfering RNAs significantly promotes CSFV replication, and conversely, overexpression of Trx2 markedly inhibits viral replication of the wild-type (wt) CSFV and to a greater extent that of the CSFV N37D mutant, which is defective in binding Trx2. The wt CSFV but not the CSFV N37D mutant was shown to reduce the Trx2 protein expression in PK-15 cells. Furthermore, we demonstrated that Trx2 increases nuclear factor kappa B (NF-κB) promoter activity by promoting the nuclear translocation of the p65 subunit of NF-κB. Notably, activation of the NF-κB signaling pathway induced by tumor necrosis factor alpha (TNF-α) significantly inhibits CSFV replication in PK-15 cells, whereas blocking the NF-κB activation in Trx2-overexpressing cells no longer suppresses CSFV replication. Taken together, our findings reveal that Trx2 inhibits CSFV replication via the NF-κB signaling pathway. IMPORTANCE: Thioredoxin 2 (Trx2) is a mitochondrion-associated protein that participates in diverse cellular events, such as antioxidative and antiapoptotic processes and the modulation of transcription factors. However, little is known about the involvement of Trx2 in viral replication. Here, we investigated, for the first time, the role of Trx2 in the replication of classical swine fever virus (CSFV), a devastating pestivirus of pigs. By knockdown and overexpression, we showed that Trx2 negatively regulates CSFV replication. Notably, we demonstrated that Trx2 inhibits CSFV replication by promoting the nuclear translocation of the p65 subunit of NF-κB, a key regulator of the host's innate immunity and inflammatory response. Our findings reveal a novel role of Trx2 in the host's antiviral response and provide new insights into the complex mechanisms by which CSFV interacts with the host cell.


Subject(s)
Classical Swine Fever Virus/physiology , Signal Transduction/physiology , Thioredoxins/pharmacology , Virus Replication/physiology , Analysis of Variance , Animals , Blotting, Western , Cell Line , DNA Primers/genetics , Gene Library , Gene Silencing , Genetic Vectors/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Microscopy, Confocal , NF-kappa B/metabolism , RNA Interference , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Swine , Thioredoxins/metabolism , Two-Hybrid System Techniques , Viral Envelope Proteins/metabolism , Virus Replication/drug effects
12.
J Virol Methods ; 222: 22-7, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26005003

ABSTRACT

Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is a devastating disease of swine worldwide. Although a mandatory vaccination with the modified live vaccine C-strain has been implemented in China for decades, CSF remains a serious threat to the swine industry. To facilitate the control and eradication of CSF in China, the E2-based marker vaccine rAdV-SFV-E2, an adenovirus-delivered, alphavirus replicon-vectored vaccine, has been developed. Accordingly, an accompanying discriminatory test that allows differentiating infected from vaccinated animals (DIVA) is required. Here, the enhanced expression of E(rns) protein of CSFV was achieved in the methyltropic yeast Pichia pastoris by codon-optimization of the E(rns) gene, and an indirect enzyme-linked immunosorbent assay (iELISA) based on the yeast-expressed E(rns) (yE(rns)) was developed and evaluated. The optimized iELISA was able to detect CSFV-specific antibodies in the serum samples from the CSFV-infected pigs as early as 6 days post-infection, and discriminate the CSFV-infected pigs from those vaccinated with rAdV-SFV-E2. The iELISA was evaluated using a panel of swine sera, and showed comparable sensitivity (94.6%) and specificity (97.1%), and the consistence rates with the virus neutralization test were 96.8% for CSFV-infected swine sera, 83.3% for C-strain-vaccinated swine sera, and 95.0% for field swine sera. In addition, the iELISA showed higher sensitivity (90.4%) compared with PrioCHECK CSFV E(rns) (59.6%). Taken together, the yE(rns)-based iELISA is specific and sensitive, representing a promising DIVA test for E2-based marker vaccines against CSF.


Subject(s)
Antibodies, Viral/blood , Classical Swine Fever Virus/immunology , Classical Swine Fever/diagnosis , Classical Swine Fever/prevention & control , Diagnostic Tests, Routine/methods , Enzyme-Linked Immunosorbent Assay/methods , Viral Structural Proteins/immunology , Animals , China , Classical Swine Fever/immunology , Classical Swine Fever Virus/genetics , Diagnosis, Differential , Gene Expression , Pichia/genetics , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Sensitivity and Specificity , Swine , Vaccines, Marker/administration & dosage , Vaccines, Marker/immunology , Viral Structural Proteins/genetics , Viral Vaccines/administration & dosage , Viral Vaccines/immunology
13.
J Virol ; 89(9): 4894-906, 2015 May.
Article in English | MEDLINE | ID: mdl-25694590

ABSTRACT

UNLABELLED: Classical swine fever virus (CSFV) is the causative agent of classical swine fever (CSF), a highly contagious, economically important viral disease in many countries. The E(rns) and E2 envelope glycoproteins are responsible for the binding to and entry into the host cell by CSFV. To date, only one cellular receptor, heparan sulfate (HS), has been identified as being involved in CSFV attachment. HS is also present on the surface of various cells that are nonpermissive to CSFV. Hence, there must be another receptor(s) that has been unidentified to date. In this study, we used a set of small interfering RNAs (siRNAs) against a number of porcine cell membrane protein genes to screen cellular proteins involved in CSFV infection. This approach resulted in the identification of several proteins, and of these, the laminin receptor (LamR) has been demonstrated to be a cellular receptor for several viruses. Confocal analysis showed that LamR is colocalized with CSFV virions on the membrane, and a coimmunoprecipitation assay indicated that LamR interacts with the CSFV E(rns) protein. In inhibition assays, anti-LamR antibodies, soluble laminin, or LamR protein significantly inhibited CSFV infection in a dose-dependent manner. Transduction of PK-15 cells with a recombinant lentivirus expressing LamR yielded higher viral titers. Moreover, an attachment assay demonstrated that LamR functions during virus attachment. We also demonstrate that LamR acts as an alternative attachment receptor, especially in SK6 cells. These results indicate that LamR is a cellular attachment receptor for CSFV. IMPORTANCE: Classical swine fever virus (CSFV) is the causative agent of classical swine fever (CSF), an economically important viral disease affecting the pig industry in many countries. To date, only heparan sulfate (HS) has been identified to be an attachment receptor for CSFV. Here, using RNA interference screening with small interfering RNAs (siRNAs) against a number of porcine membrane protein genes, we identified the laminin receptor (LamR) to be another attachment receptor. We demonstrate the involvement of LamR together with HS in virus attachment, and we elucidate the relationship between LamR and HS. LamR also serves as an attachment receptor for many viral pathogens, including dengue virus, a fatal human flavivirus. The study will help to enhance our understanding of the life cycle of flaviviruses and the development of antiviral strategies for flaviviruses.


Subject(s)
Classical Swine Fever Virus/physiology , Receptors, Laminin/metabolism , Receptors, Virus/metabolism , Virus Attachment , Animals , Cell Line , Genetic Testing , Immunoprecipitation , Protein Interaction Mapping , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Swine
SELECTION OF CITATIONS
SEARCH DETAIL