Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 151
Filter
1.
Article in English | MEDLINE | ID: mdl-39137086

ABSTRACT

Biomedical event detection is a pivotal information extraction task in molecular biology and biomedical research, which provides inspiration for the medical search, disease prevention, and new drug development. The existing methods usually detect simple biomedical events and complex events with the same model, and the performance of the complex biomedical event extraction is relatively low. In this paper, we build different neural networks for simple and complex events respectively, which helps to promote the performance of complex event extraction. To avoid redundant information, we design dynamic path planning strategy for argument detection. To take full use of the information between the trigger identification and argument detection subtasks, and reduce the cascading errors, we build a joint event extraction model. Experimental results demonstrate our approach achieves the best F-score on the biomedical benchmark MLEE dataset and outperforms the recent state-of-the-art methods.

2.
Aging Dis ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39122450

ABSTRACT

The process of aging, which involves progressive changes in the body over time, is closely associated with the development of age-related diseases. Cellular senescence is a pivotal hallmark and mechanism of the aging process. The accumulation of senescent cells can significantly contribute to the onset of age-related diseases, thereby compromising overall health. Conversely, the elimination of senescent cells enhances the body's regenerative and reparative capacity, thereby retarding the aging process. Here, we present a brief overview of 12 Hallmarks of aging and subsequently emphasize the potential of immune checkpoint blockade, innate immune cell therapy (including T cells, iNKT cells, macrophages, and NK cells), as well as CAR-T cell therapy for inducing and augmenting immune responses aimed at eliminating senescent cells. In addition to CAR-T cells, we also explore the possibility of engineered immune cells such as CAR-NK and CAR-M cells to eliminate senescent cells. In summary, immunotherapy, as an emerging strategy for the treatment of aging, offers new prospects for age-related research.

3.
Front Oncol ; 14: 1423143, 2024.
Article in English | MEDLINE | ID: mdl-39055561

ABSTRACT

Oncolytic viruses (OVs) have emerged as a potential strategy for tumor treatment due to their ability to selectively replicate in tumor cells, induce apoptosis, and stimulate immune responses. However, the therapeutic efficacy of single OVs is limited by the complexity and immunosuppressive nature of the tumor microenvironment (TME). To overcome these challenges, engineering OVs has become an important research direction. This review focuses on engineering methods and multi-modal combination therapies for OVs aimed at addressing delivery barriers, viral phagocytosis, and antiviral immunity in tumor therapy. The engineering approaches discussed include enhancing in vivo immune response, improving replication efficiency within the tumor cells, enhancing safety profiles, and improving targeting capabilities. In addition, this review describes the potential mechanisms of OVs combined with radiotherapy, chemotherapy, cell therapy and immune checkpoint inhibitors (ICIs), and summarizes the data of ongoing clinical trials. By continuously optimizing engineering strategies and combination therapy programs, we can achieve improved treatment outcomes and quality of life for cancer patients.

4.
J Clin Transl Hepatol ; 12(6): 539-550, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38974954

ABSTRACT

Background and Aims: Hepatic fibrosis (HF) is a critical step in the progression of hepatocellular carcinoma (HCC). Gene associated with retinoid-IFN-induced mortality 19 (GRIM19), an essential component of mitochondrial respiratory chain complex I, is frequently attenuated in various human cancers, including HCC. Here, we aimed to investigate the potential relationship and underlying mechanism between GRIM19 loss and HF pathogenesis. Methods: GRIM19 expression was evaluated in normal liver tissues, hepatitis, hepatic cirrhosis, and HCC using human liver disease spectrum tissue microarrays. We studied hepatocyte-specific GRIM19 knockout mice and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 (Cas9) lentivirus-mediated GRIM19 gene-editing in murine hepatocyte AML12 cells in vitro and in vivo. We performed flow cytometry, immunofluorescence, immunohistochemistry, western blotting, and pharmacological intervention to uncover the potential mechanisms underlying GRIM19 loss-induced HF. Results: Mitochondrial GRIM19 was progressively downregulated in chronic liver disease tissues, including hepatitis, cirrhosis, and HCC tissues. Hepatocyte-specific GRIM19 heterozygous deletion induced spontaneous hepatitis and subsequent liver fibrogenesis in mice. In addition, GRIM19 loss caused chronic liver injury through reactive oxygen species (ROS)-mediated oxidative stress, resulting in aberrant NF-кB activation via an IKK/IкB partner in hepatocytes. Furthermore, GRIM19 loss activated NLRP3-mediated IL33 signaling via the ROS/NF-кB pathway in hepatocytes. Intraperitoneal administration of the NLRP3 inhibitor MCC950 dramatically alleviated GRIM19 loss-driven HF in vivo. Conclusions: The mitochondrial GRIM19 loss facilitates liver fibrosis through NLRP3/IL33 activation via ROS/NF-кB signaling, providing potential therapeutic approaches for earlier HF prevention.

5.
Mikrochim Acta ; 191(8): 470, 2024 07 18.
Article in English | MEDLINE | ID: mdl-39023769

ABSTRACT

A CRISPR/Cas12a-coupled multiplexed strand displacement amplification (CMSDA) for the detection of miR155 has been developed. Non-specific amplification was avoided by designing a single-stranded DNA template with a hairpin structure. The detection target miR155 was used as a primer to initiate a multiple-strand displacement reaction to produce abundant ssDNA. ssDNA was recognized by the Cas12a/CrRNA binary complex, activating the trans-cleaving activity of Cas12a. The multiple-strand displacement reaction is more efficiently detected compared with a single-strand displacement reaction. The detection range is from 250 pM to 1 nM, and the limit of the detection is 6.5 pM. The proposed method showed a good applicability in complex serum environments, indicating that the method has a broad prospect for disease detection and clinical application. In addition, we designed a dual-cavity PCR tube, which realized one-tube detection of miRNA155 and avoided open-cap contamination.


Subject(s)
CRISPR-Cas Systems , MicroRNAs , MicroRNAs/analysis , MicroRNAs/blood , MicroRNAs/genetics , Humans , CRISPR-Cas Systems/genetics , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/genetics , Limit of Detection , Nucleic Acid Amplification Techniques/methods , Polymerase Chain Reaction/methods , Bacterial Proteins , Endodeoxyribonucleases , CRISPR-Associated Proteins
6.
Neurosci Bull ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39078594

ABSTRACT

Excessive secretion of human islet amyloid polypeptide (hIAPP) is an important pathological basis of diabetic encephalopathy (DE). In this study, we aimed to investigate the potential implications of hIAPP in DE pathogenesis. Brain magnetic resonance imaging and cognitive scales were applied to evaluate white matter damage and cognitive function. We found that the concentration of serum hIAPP was positively correlated with white matter damage but negatively correlated with cognitive scores in patients with type 2 diabetes mellitus. In vitro assays revealed that oligodendrocytes, compared with neurons, were more prone to acidosis under exogenous hIAPP stimulation. Moreover, western blotting and co-immunoprecipitation indicated that hIAPP interfered with the binding process of monocarboxylate transporter (MCT)1 to its accessory protein CD147 but had no effect on the binding of MCT2 to its accessory protein gp70. Proteomic differential analysis of proteins co-immunoprecipitated with CD147 in oligodendrocytes revealed Yeast Rab GTPase-Interacting protein 2 (YIPF2, which modulates the transfer of CD147 to the cell membrane) as a significant target. Furthermore, YIPF2 inhibition significantly improved hIAPP-induced acidosis in oligodendrocytes and alleviated cognitive dysfunction in DE model mice. These findings suggest that increased CD147 translocation by inhibition of YIPF2 optimizes MCT1 and CD147 binding, potentially ameliorating hIAPP-induced acidosis and the consequent DE-related demyelination.

7.
Front Immunol ; 15: 1399856, 2024.
Article in English | MEDLINE | ID: mdl-38962008

ABSTRACT

Objective: Rheumatoid arthritis (RA) is a systemic disease that attacks the joints and causes a heavy economic burden on humans worldwide. T cells regulate RA progression and are considered crucial targets for therapy. Therefore, we aimed to integrate multiple datasets to explore the mechanisms of RA. Moreover, we established a T cell-related diagnostic model to provide a new method for RA immunotherapy. Methods: scRNA-seq and bulk-seq datasets for RA were obtained from the Gene Expression Omnibus (GEO) database. Various methods were used to analyze and characterize the T cell heterogeneity of RA. Using Mendelian randomization (MR) and expression quantitative trait loci (eQTL), we screened for potential pathogenic T cell marker genes in RA. Subsequently, we selected an optimal machine learning approach by comparing the nine types of machine learning in predicting RA to identify T cell-related diagnostic features to construct a nomogram model. Patients with RA were divided into different T cell-related clusters using the consensus clustering method. Finally, we performed immune cell infiltration and clinical correlation analyses of T cell-related diagnostic features. Results: By analyzing the scRNA-seq dataset, we obtained 10,211 cells that were annotated into 7 different subtypes based on specific marker genes. By integrating the eQTL from blood and RA GWAS, combined with XGB machine learning, we identified a total of 8 T cell-related diagnostic features (MIER1, PPP1CB, ICOS, GADD45A, CD3D, SLFN5, PIP4K2A, and IL6ST). Consensus clustering analysis showed that RA could be classified into two different T-cell patterns (Cluster 1 and Cluster 2), with Cluster 2 having a higher T-cell score than Cluster 1. The two clusters involved different pathways and had different immune cell infiltration states. There was no difference in age or sex between the two different T cell patterns. In addition, ICOS and IL6ST were negatively correlated with age in RA patients. Conclusion: Our findings elucidate the heterogeneity of T cells in RA and the communication role of these cells in an RA immune microenvironment. The construction of T cell-related diagnostic models provides a resource for guiding RA immunotherapeutic strategies.


Subject(s)
Arthritis, Rheumatoid , Mendelian Randomization Analysis , Quantitative Trait Loci , RNA-Seq , Single-Cell Analysis , Humans , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/diagnosis , Single-Cell Analysis/methods , Nomograms , Machine Learning , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Gene Expression Profiling , Single-Cell Gene Expression Analysis
8.
Front Psychol ; 15: 1369611, 2024.
Article in English | MEDLINE | ID: mdl-38873520

ABSTRACT

Background: Health has effects on children's academic performance. Qi deficiency is generally used to assess an individual's health in the Chinese traditional medicine theory. This study explores the effects of qi deficiency on children's academic performance and examines whether mental fatigue mediates these effects. Methods: A total of 550 students aged 10-13 in fifth-grade were surveyed in a big primary school in Sichuan Province in November 2023 using paper-pencil-based questionnaires. Qi deficiency and mental fatigue were assessed, and exam scores in Chinese and Mathematics were recorded. Pearson's correlation and linear regression analyses were used to test the mediation model and hypotheses. Results: The fifth-grade students had mild qi deficiency (M = 2.09) and a mild state of mental fatigue (M = 2.38) on a five-point Likert scale. The average exam scores in Mathematics and Chinese were 70.07 and 74.44 points out of 100, respectively. Qi deficiency was associated with Mathematics scores (r = -0.37, p < 0.01) and Chinese scores (r = -0.30, p < 0.01), and mental fatigue (r = 0.47, p < 0.01). Furthermore, mental fatigue was associated with Mathematics scores (r = -0.46, p < 0.01) and Chinese scores (r = -0.34, p < 0.01). Linear regression analyses showed that qi deficiency significantly predicted Mathematics scores (ß = -0.26, p < 0.01), Chinese scores (ß = -0.19, p < 0.01), and mental fatigue (ß = 0.41, p < 0.01). When qi deficiency was controlled for, mental fatigue significantly predicted Mathematics scores (ß = -0.28, p < 0.01) and Chinese scores (ß = -0.17, p < 0.01). Conclusion: The mediation model and hypotheses were well supported, indicating that mental fatigue mediated the influence of qi deficiency on academic performance of fifth-grade students. Furthermore, the mediation effect of mental fatigue on Mathematics scores was a little stronger than that on Chinese scores.

9.
China CDC Wkly ; 6(23): 553-557, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38933663

ABSTRACT

Introduction: Traditional methods for determining radiation dose in nuclear medicine include the Monte Carlo method, the discrete ordinate method, and the point kernel integration method. This study presents a new mathematical model for predicting the radiation dose rate in the vicinity of nuclear medicine patients. Methods: A new algorithm was created by combining the physical model of "cylinder superposition" of the human body with integral analysis to assess the radiation dose rate in the vicinity of nuclear medicine patients. Results: The model accurately predicted radiation dose rates within distances of 0.1-3.0 m, with a deviation of less than 11% compared to observed rates. The model demonstrated greater accuracy at shorter distances from the radiation source, with a deviation of only 1.55% from observed values at 0.1 m. Discussion: The model proposed in this study effectively represents the spatial and temporal distribution of the radiation field around nuclear medicine patients and demonstrates good agreement with actual measurements. This model has the potential to serve as a radiation dose rate alert system in hospital environments.

10.
Ren Fail ; 46(2): 2367021, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38938187

ABSTRACT

RATIONALE AND OBJECTIVES: Researchers have delved into noninvasive diagnostic methods of renal fibrosis (RF) in chronic kidney disease, including ultrasound (US), magnetic resonance imaging (MRI), and radiomics. However, the value of these diagnostic methods in the noninvasive diagnosis of RF remains contentious. Consequently, the present study aimed to systematically delineate the accuracy of the noninvasive diagnosis of RF. MATERIALS AND METHODS: A systematic search covering PubMed, Embase, Cochrane Library, and Web of Science databases for all data available up to 28 July 2023 was conducted for eligible studies. RESULTS: We included 21 studies covering 4885 participants. Among them, nine studies utilized US as a noninvasive diagnostic method, eight studies used MRI, and four articles employed radiomics. The sensitivity and specificity of US for detecting RF were 0.81 (95% CI: 0.76-0.86) and 0.79 (95% CI: 0.72-0.84). The sensitivity and specificity of MRI were 0.77 (95% CI: 0.70-0.83) and 0.92 (95% CI: 0.85-0.96). The sensitivity and specificity of radiomics were 0.69 (95% CI: 0.59-0.77) and 0.78 (95% CI: 0.68-0.85). CONCLUSIONS: The current early noninvasive diagnostic methods for RF include US, MRI, and radiomics. However, this study demonstrates that US has a higher sensitivity for the detection of RF compared to MRI. Compared to US, radiomics studies based on US did not show superior advantages. Therefore, challenges still exist in the current radiomics approaches for diagnosing RF, and further exploration of optimized artificial intelligence (AI) algorithms and technologies is needed.


Subject(s)
Fibrosis , Magnetic Resonance Imaging , Renal Insufficiency, Chronic , Ultrasonography , Humans , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/complications , Sensitivity and Specificity , Kidney/pathology , Kidney/diagnostic imaging
11.
Sci Rep ; 14(1): 12281, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811638

ABSTRACT

A large number of economic forests, especially apple orchards (AOs) in the Loess Plateau region of China, have been planted to develop the local economy and increase the income of farmers. The two main constraints preventing AOs on the Loess Plateau from developing sustainably and producing a high and steady yield are soil moisture content (SMC) and soil organic carbon (SOC). Nevertheless, little is currently known about the contributions of roots to these changes in the soil profile and the temporal modes of the SMC-SOC coupled effects. In our research, we analyzed the dynamic changes in SMC and SOC in AOs of various years in northern Shaanxi Province, as well as the coupled relationship between the two, and attempted to describe the function of roots in these changes. Research have shown: (1) As the age of the AOs increased, the SMC continued to decline throughout the 0-500 cm profile, especially at depths of 100-500 cm. SMC depletion mainly occurred in AOs aged 20 years (30.02%/year) and 30 years (31.18%/year). (2) Compared with abandoned land (AL), all the AOs except for the 6-year-old AO showed a carbon sequestration effect, and the carbon sequestration effect increased with age. The carbon sequestration rate of the 12-year-old AO was the highest and then decreased with age. Both surface and deeper soils showed better carbon sequestration, with a large amount of SOC being sequestered in deeper soil layers (> 100 cm). (3) The coupled effects of SMC and SOC varied with age and depth. The SMC in the deeper layers was significantly negatively correlated with SOC. Root dry weight density (RDWD) was significantly negatively correlated with SMC and significantly positively correlated with SOC. Path analysis suggested that SMC directly affects SOC at different soil depths, and regulates SOC by affecting RDWD, but these effects are significantly different at different depths. Therefore, we propose that management of AO should focus on the moisture deficit and carbon sequestration capabilities of deeper soils to ensure the sustainability of water use in AOs and the stability of agricultural carbon sequestration on the Loess Plateau.

12.
ACS Nano ; 18(22): 14339-14347, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38781247

ABSTRACT

In alignment with the increasing demand for larger storage capacity and longer data retention, the electrical control of magnetic anisotropy has been a research focus in the realm of spintronics. Typically, magnetic anisotropy is determined by grain dimensionality, which is set during the fabrication of magnetic thin films. Despite the intrinsic correlation between magnetic anisotropy and grain dimensionality, there is a lack of experimental evidence for electrically controlling grain dimensionality, thereby impairing the efficiency of magnetic anisotropy modulation. Here, we demonstrate an electric field control of grain dimensionality and prove it as the active mechanism for tuning interfacial magnetism. The reduction in grain dimensionality is associated with a transition from ferromagnetic to superparamagnetic behavior. We achieve a nonvolatile and reversible modulation of the coercivity in both the ferromagnetic and superparamagnetic regimes. Subsequent electrical and elemental analysis confirms the variation in grain dimensionality upon the application of gate voltages, revealing a transition from a multidomain to a single-domain state, accompanied by a reduction in grain dimensionality. Furthermore, we exploit the influence of grain dimensionality on domain wall motion, extending its applicability to multilevel magnetic memory and synaptic devices. Our results provide a strategy for tuning interfacial magnetism through grain size engineering for advancements in high-performance spintronics.

13.
Front Public Health ; 12: 1363866, 2024.
Article in English | MEDLINE | ID: mdl-38655517

ABSTRACT

Background: In China, the prevalence of mental health issues among college students is a significant concern in society. This study aims to investigate the impact of early dietary quality on the psychological well-being of college students and elucidate the underlying mechanisms through which these effects occur, specifically focusing on height and qi-deficiency as mediators according to Chinese traditional medicine (CTM). Methods: A total of 655 college students were surveyed in October 2023 using paper-pencil-based questionnaires at four second-tier universities in Sichuan Province. The assessment included mental health, height, and qi-deficiency. Pearson's correlation and linear regression analyses were employed to examine the mediation model and test the hypotheses. Results: The college students exhibited acceptable levels of early diet quality (M = 3.72) and mental health (M = 3.63), while also presenting mild qi-deficiency symptoms (M = 2.25). Their average height was measured at 164.61 cm. Early diet quality demonstrated significant associations with mental health (r = 0.38, p < 0.01), height (r = 0.32, p < 0.01), and qi-deficiency (r = -0.32, p < 0.01). Mental health displayed correlations with height (r = 0.32, p < 0.01) and qi-deficiency (r = -0.49, p < 0.01). The results of linear regression analyses revealed significant associations between early diet quality and mental health (ß = 0.31, p < 0.01), height (ß = 0.21, p < 0.01), as well as qi-deficiency (ß = -0.26, p < 0.01). Furthermore, when early diet quality was included in the regression model, both height (ß = 0.21, p < 0.01) and qi-deficiency (ß = -0.35, p < 0.01) emerged as significant mediators in the relationship with mental health. Conclusion: The mediation model and hypotheses were strongly supported, demonstrating that early diet quality exerted an influence on the mental health of college students through two distinct pathways: height and qi-deficiency. Moreover, the mediating effect of qi-deficiency was found to be more pronounced than that of height in the relationship between early diet quality and mental health among college students.


Subject(s)
Body Height , Diet , Mental Health , Qi , Students , Humans , Female , Students/statistics & numerical data , Students/psychology , Male , Universities , Mental Health/statistics & numerical data , China , Young Adult , Surveys and Questionnaires , Diet/statistics & numerical data , Adult , Adolescent , Medicine, Chinese Traditional
14.
Nat Commun ; 15(1): 2831, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565562

ABSTRACT

The prodrug design strategy offers a potent solution for improving therapeutic index and expanding drug targets. However, current prodrug activation designs are mainly responsive to endogenous stimuli, resulting in unintended drug release and systemic toxicity. In this study, we introduce 3-vinyl-6-oxymethyl-tetrazine (voTz) as an all-in-one reagent for modular preparation of tetrazine-caged prodrugs and chemoselective labeling peptides to produce bioorthogonal activable peptide-prodrug conjugates. These stable prodrugs can selectively bind to target cells, facilitating cellular uptake. Subsequent bioorthogonal cleavage reactions trigger prodrug activation, significantly boosting potency against tumor cells while maintaining exceptional off-target safety for normal cells. In vivo studies demonstrate the therapeutic efficacy and safety of this prodrug design approach. Given the broad applicability of functional groups and labeling versatility with voTz, we foresee that this strategy will offer a versatile solution to enhance the therapeutic range of cytotoxic agents and facilitate the development of bioorthogonal activatable biopharmaceuticals and biomaterials.


Subject(s)
Heterocyclic Compounds , Prodrugs , Prodrugs/pharmacology , Prodrugs/therapeutic use , Cell Line, Tumor , Cysteine , Drug Delivery Systems
16.
BMC Pediatr ; 24(1): 238, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570780

ABSTRACT

BACKGROUND: Bronchopulmonary dysplasia (BPD) is a major complication affecting the survival rate and long-term outcomes of preterm infants. A large, prospective, multicenter cohort study was conducted to evaluate early nutritional support during the first week of life for preterm infants with a gestational age < 32 weeks and to verify nutritional risk factors related to BPD development. METHODS: A prospective multicenter cohort study of very preterm infants was conducted in 40 tertiary neonatal intensive care units across mainland China between January 1, 2020, and December 31, 2021. Preterm infants who were born at a gestational age < 32 weeks, < 72 h after birth and had a respiratory score > 4 were enrolled. Antenatal and postnatal information focusing on nutritional parameters was collected through medical systems. Statistical analyses were also performed to identify BPD risk factors. RESULTS: The primary outcomes were BPD and severity at 36 weeks postmenstrual age. A total of 1410 preterm infants were enrolled in this study. After applying the exclusion criteria, the remaining 1286 infants were included in this analysis; 614 (47.7%) infants were in the BPD group, and 672 (52.3%) were in the non-BPD group. In multivariate logistic regression model, the following six factors were identified of BPD: birth weight (OR 0.99, 95% CI 0.99-0.99; p = 0.039), day of full enteral nutrition (OR 1.03, 95% CI 1.02-1.04; p < 0.001), parenteral protein > 3.5 g/kg/d during the first week (OR 1.65, 95% CI 1.25-2.17; p < 0.001), feeding type (formula: OR 3.48, 95% CI 2.21-5.49; p < 0.001, mixed feed: OR 1.92, 95% CI 1.36-2.70; p < 0.001; breast milk as reference), hsPDA (OR 1.98, 95% CI 1.44-2.73; p < 0.001), and EUGR ats 36 weeks (OR 1.40, 95% CI 1.02-1.91; p = 0.035). CONCLUSIONS: A longer duration to achieve full enteral nutrition in very preterm infants was associated with increased BPD development. Breastfeeding was demonstrated to have a protective effect against BPD. Early and rapidly progressive enteral nutrition and breastfeeding should be promoted in very preterm infants. TRIAL REGISTRATION: The trial was registered in the Chinese Clinical Trial Registry (No. ChiCTR2000030125 on 24/02/2020) and in www.ncrcch.org (No. ISRCTN84167642 on 25/02/2020).


Subject(s)
Bronchopulmonary Dysplasia , Infant, Premature, Diseases , Respiratory Distress Syndrome , Humans , Infant, Newborn , Bronchopulmonary Dysplasia/therapy , Cohort Studies , Enteral Nutrition , Fetal Growth Retardation , Gestational Age , Infant, Premature , Prospective Studies
17.
J Zhejiang Univ Sci B ; 25(4): 280-292, 2024 Apr 15.
Article in English, Chinese | MEDLINE | ID: mdl-38584091

ABSTRACT

Cells within tissues are subject to various mechanical forces, including hydrostatic pressure, shear stress, compression, and tension. These mechanical stimuli can be converted into biochemical signals through mechanoreceptors or cytoskeleton-dependent response processes, shaping the microenvironment and maintaining cellular physiological balance. Several studies have demonstrated the roles of Yes-associated protein (YAP) and its homolog transcriptional coactivator with PDZ-binding motif (TAZ) as mechanotransducers, exerting dynamic influence on cellular phenotypes including differentiation and disease pathogenesis. This regulatory function entails the involvement of the cytoskeleton, nucleoskeleton, integrin, focal adhesions (FAs), and the integration of multiple signaling pathways, including extracellular signal-regulated kinase (ERK), wingless/integrated (WNT), and Hippo signaling. Furthermore, emerging evidence substantiates the implication of long non-coding RNAs (lncRNAs) as mechanosensitive molecules in cellular mechanotransduction. In this review, we discuss the mechanisms through which YAP/TAZ and lncRNAs serve as effectors in responding to mechanical stimuli. Additionally, we summarize and elaborate on the crucial signal molecules involved in mechanotransduction.


Subject(s)
Mechanotransduction, Cellular , RNA, Long Noncoding , Mechanotransduction, Cellular/genetics , Adaptor Proteins, Signal Transducing/genetics , Hippo Signaling Pathway , Intracellular Signaling Peptides and Proteins/metabolism
18.
J Cell Biol ; 223(6)2024 06 03.
Article in English | MEDLINE | ID: mdl-38488622

ABSTRACT

The nuclear translocation of YAP1 is significantly implicated in the proliferation, stemness, and metastasis of cancer cells. Although the molecular basis underlying YAP1 subcellular distribution has been extensively explored, it remains to be elucidated how the nuclear localization signal guides YAP1 to pass through the nuclear pore complex. Here, we define a globular type of nuclear localization signal composed of folded WW domains, named as WW-NLS. It directs YAP1 nuclear import through the heterodimeric nuclear transport receptors KPNA-KPNB1, bypassing the canonical nuclear localization signal that has been well documented in KPNA/KPNB1-mediated nuclear import. Strikingly, competitive interference with the function of the WW-NLS significantly attenuates YAP1 nuclear translocation and damages stemness gene activation and sphere formation in malignant breast cancer cells. Our findings elucidate a novel globular type of nuclear localization signal to facilitate nuclear entry of WW-containing proteins including YAP1.


Subject(s)
Cell Nucleus , Nuclear Localization Signals , YAP-Signaling Proteins , Humans , Active Transport, Cell Nucleus , Cell Nucleus/metabolism , Nuclear Localization Signals/genetics , Nuclear Localization Signals/metabolism , Proteins/metabolism , WW Domains , YAP-Signaling Proteins/chemistry , YAP-Signaling Proteins/metabolism , alpha Karyopherins/metabolism , beta Karyopherins/metabolism
19.
Front Immunol ; 15: 1354313, 2024.
Article in English | MEDLINE | ID: mdl-38426090

ABSTRACT

The incidence of hepatocellular carcinoma (HCC) ranks first among primary liver cancers, and its mortality rate exhibits a consistent annual increase. The treatment of HCC has witnessed a significant surge in recent years, with the emergence of targeted immune therapy as an adjunct to early surgical resection. Adoptive cell therapy (ACT) using tumor-infiltrating lymphocytes (TIL) has shown promising results in other types of solid tumors. This article aims to provide a comprehensive overview of the intricate interactions between different types of TILs and their impact on HCC, elucidate strategies for targeting neoantigens through TILs, and address the challenges encountered in TIL therapies along with potential solutions. Furthermore, this article specifically examines the impact of oncogenic signaling pathways activation within the HCC tumor microenvironment on the infiltration dynamics of TILs. Additionally, a concise overview is provided regarding TIL preparation techniques and an update on clinical trials investigating TIL-based immunotherapy in solid tumors.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Lymphocytes, Tumor-Infiltrating , Liver Neoplasms/pathology , Immunotherapy, Adoptive , Signal Transduction , Tumor Microenvironment
20.
BMJ Paediatr Open ; 8(1)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38508659

ABSTRACT

OBJECTIVE: Small-for-gestational-age (SGA) infants are at risk of impaired growth and developmental outcomes, even for those who were born at full term. The growth trajectory of full-term SGA infants remains unknown. Therefore, this study aimed to evaluate the growth trajectory of full-term SGA infants from birth to 3 years old in East China. METHODS: Full-term SGA infants were followed up from birth to 3 years old. The weight and length were measured at 3, 6, 12, 18, 24, 30 and 36 months. Rate of catch-up growth and rates of growth deviations including short stature, emaciation, underweight, overweight and obesity, were calculated at different time points. Latent class analysis was applied to describe growth trajectories from birth to 36 months. RESULTS: A total of 816 full-term SGA infants were enrolled in this study and 303 had complete follow-up data at 3, 6, 12, 18, 24, 30 and 36 months. At 24 months, the rate of catch-up growth was 42.4% in girls and 48.6% in boys; while at 36 months, this rate was 43.3% in girls and 52.1% in boys. The latent class analysis identified two trajectories of weight and length in boys and girls. Girls showed different growth trajectories of weight since 12 months compared with boys. CONCLUSIONS: Our study reported a relatively low rate of catch-up growth in full-term SGA infants and has identified different growth trajectories of length and weight in boys and girls. We call for attention from health professionals on the growth trajectory of full-term SGA infants to eventually promote their health potentials.


Subject(s)
Fetal Growth Retardation , Infant, Small for Gestational Age , Infant, Newborn , Infant , Male , Female , Humans , Longitudinal Studies , China/epidemiology , Obesity
SELECTION OF CITATIONS
SEARCH DETAIL