Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 168
Filter
1.
Chemosphere ; : 142843, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39004151

ABSTRACT

The long-term performance of anaerobic digestion (AD) often decreases substantially when treating swine wastewater contaminated with heavy metals. However, the toxicological characteristics and mechanisms of continuous exposure to heavy metals under different organic loading rates (OLR) are still poorly understood. In these semi-continuous AD experiments, it was found that zinc concentrations of 40 mg/L only deteriorated the reductive environments of AD. In comparison, a concentration of 2.0 mg/L probably facilitated the reproduction of microorganisms in the operating digesters with a constant OLR of 0.51 g COD/(L·d). Nevertheless, when the OLR was increased to 2.30 g COD/(L·d), 2.0 mg/L zinc inhibited various life activities of microorganisms at the molecular level within only 10 days. Hence, even though 2.0 mg/L zinc could promote AD performances from a macroscopic perspective, it had potential inhibitory effects on AD. Therefore, this study deepens the understanding of the inhibitions caused by heavy metals on AD and the metabolic laws of anaerobic microorganisms in swine wastewater treatment. These results could be referred to for enhancing AD in the presence of zinc in practical swine wastewater treatment.

2.
Foods ; 13(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38998558

ABSTRACT

The aim of this study was to prepare and characterize stable non-covalent ternary complexes based on pea protein (PP, 0.5%), hyaluronic acid (HA, 0.125%), and chlorogenic acid (CA, 0~0.03%). The ternary complexes were comprehensively evaluated for physicochemical attributes, stability, emulsifying capacities, antioxidant properties, and antimicrobial efficacy. PP-HA binary complexes were first prepared at pH 7, and then CA was bound to the binary complexes, as verified by fluorescence quenching. Molecular docking elucidated that PP interacted with HA and CA through hydrogen bonding, hydrophobic and electrostatic interactions. The particle size of ternary complexes initially decreased, then increased with CA concentration, peaking at 0.025%. Ternary complexes demonstrated good stability against UV light and thermal treatment. Emulsifying activity of complexes initially decreased and then increased, with a turning point of 0.025%, while emulsion stability continued to increase. Complexes exhibited potent scavenging ability against free radicals and iron ions, intensifying with higher CA concentrations. Ternary complexes effectively inhibited Staphylococcus aureus and Escherichia coli, with inhibition up to 0.025%, then decreasing with CA concentration. Our study indicated that the prepared ternary complexes at pH 7 were stable and possessed good functionality, including emulsifying properties, antioxidant activity, and antibacterial properties under certain concentrations of CA. These findings may provide valuable insights for the targeted design and application of protein-polysaccharide-polyphenol complexes in beverages and dairy products.

3.
Expert Opin Drug Deliv ; : 1-15, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38946471

ABSTRACT

INTRODUCTION: Understanding the interactions between administered nanoparticles and the liver is crucial for developing safe and effective nanomedicines. As the liver can sequester up to 99% of these particles due to its major phagocytic role, understanding these interactions is vital for clinical translation. AREAS COVERED: This review highlights recent studies on nanoparticle-liver interactions, including the influence of nanoparticle physicochemical properties on delivery, strategies to enhance delivery efficiency by modulating liver Kupffer cells, and their potential for treating certain hepatic diseases. Additionally, we discuss how aging impacts the liver's phagocytic functions. EXPERT OPINION: While liver accumulation can hinder nanomedicine safety and effectiveness, it also presents opportunities for treating certain liver diseases. A thorough understanding of nanoparticle-liver interactions is essential for advancing the clinical application of nanomedicines.

4.
Front Immunol ; 15: 1397722, 2024.
Article in English | MEDLINE | ID: mdl-38957471

ABSTRACT

Rationale: Sepsis is a life-threatening organ dysfunction and lack of effective measures in the current. Exosomes from mesenchymal stem cells (MSCs) reported to alleviate inflammation during sepsis, and the preconditioning of MSCs could enhance their paracrine potential. Therefore, this study investigated whether exosomes secreted by lipopolysaccharide (LPS)-pretreated MSCs exert superior antiseptic effects, and explored the underlying molecular mechanisms. Methods: Exosomes were isolated and characterized from the supernatants of MSCs. The therapeutic efficacy of normal exosomes (Exo) and LPS-pretreated exosomes (LPS-Exo) were evaluated in terms of survival rates, inflammatory response, and organ damage in an LPS-induced sepsis model. Macrophages were stimulated with LPS and treated with Exo or LPS-Exo to confirm the results of the in vivo studies, and to explain the potential mechanisms. Results: LPS-Exo were shown to inhibit aberrant pro-inflammatory cytokines, prevent organ damages, and improve survival rates of the septic mice to a greater extent than Exo. In vitro, LPS-Exo significantly promoted the M2 polarization of macrophages exposed to inflammation. miRNA sequencing and qRT-PCR analysis identified the remarkable expression of miR-150-5p in LPS-Exo compared to that in Exo, and exosomal miR-150-5p was transferred into recipient macrophages and mediated macrophage polarization. Further investigation demonstrated that miR-150-5p targets Irs1 in recipient macrophages and subsequently modulates macrophage plasticity by down-regulating the PI3K/Akt/mTOR pathway. Conclusion: The current findings highly suggest that exosomes derived from LPS pre-conditioned MSCs represent a promising cell-free therapeutic method and highlight miR-150-5p as a novel molecular target for regulating immune hyperactivation during sepsis.


Subject(s)
Exosomes , Insulin Receptor Substrate Proteins , Lipopolysaccharides , Macrophages , Mesenchymal Stem Cells , MicroRNAs , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Sepsis , Signal Transduction , TOR Serine-Threonine Kinases , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , Sepsis/metabolism , Sepsis/immunology , TOR Serine-Threonine Kinases/metabolism , Mice , Proto-Oncogene Proteins c-akt/metabolism , Macrophages/metabolism , Macrophages/immunology , Insulin Receptor Substrate Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Male , Mice, Inbred C57BL , Macrophage Activation/drug effects , Disease Models, Animal
5.
Int J Biol Macromol ; : 133478, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38942412

ABSTRACT

Amauroderma rugosum (AR) is commonly recognized as a medicinal fungus, often used as an alternative to Ganoderma lucidum. There is a scarcity of comprehensive and in-depth research on its bioactive polysaccharides and their associated biological activities. Herein, we isolated the polysaccharide fractions extracted from AR (ARPs) and investigated their primary structure and anti-angiogenic activities, given that various diseases are associated with excessive angiogenesis. Four polysaccharide fractions including ARP-0, ARP-1, ARP-2, and ARP-5 were heteropolysaccharides with different molecular weights, monosaccharide compositions, and micromorphologies, highlighting their varying bioactive profiles. Treatment of human umbilical vein endothelial cells with these polysaccharide fractions showed that only ARP-5 inhibited cell proliferation after vascular endothelial growth factor (VEGF) stimulation. Similarly, ARP-5 inhibited human umbilical vein endothelial cells migration, invasion, and tube formation upon VEGF (50 ng/mL) treatment. Moreover, compared with the insignificant effects of ARP-0, ARP-1, and ARP-2, ARP-5 impeded angiogenesis in zebrafish embryos. Additionally, ARP-5 downregulated the VEGF/VEGFR2 signaling pathway in a dose-dependent manner, suggesting that ARP-5 exerts its anti-angiogenic activities by blocking the VEGF/VEGFR2-mediated angiogenesis signaling pathway. Taken together, the study findings shed light on the primary structure and bioactivity of ARPs.

6.
Biosensors (Basel) ; 14(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38920598

ABSTRACT

A microfluidic sweat monitoring patch that collects human sweat for a long time is designed to achieve the effect of detecting the rise and fall of human sweat glucose over a long period of time by increasing the use time of a single patch. Five collection pools, four serpentine channels, and two different valves are provided. Among them, the three-dimensional valve has a large burst pressure as a balance between the internal and external air pressures of the patch. The bursting pressure of the two-dimensional diverter valve is smaller than that of the three-dimensional gas valve, and its role is to control the flow direction of the liquid. Through plasma hydrophilic treatment of different durations, the optimal hydrophilic duration is obtained. The embedded chromogenic disc detects the sweat glucose value at two adjacent time intervals and compares the information of the human body to increase or reduce glucose. The patch has good flexibility and can fit well with human skin, and because polydimethylsiloxane (PDMS) has good light transmission, it reduces the measurement error caused by the color-taking process and makes the detection results more accurate.


Subject(s)
Sweat , Humans , Sweat/chemistry , Hypoglycemia , Glucose/analysis , Biosensing Techniques , Microfluidics , Dimethylpolysiloxanes/chemistry , Blood Glucose/analysis
7.
Ibrain ; 10(2): 197-216, 2024.
Article in English | MEDLINE | ID: mdl-38915944

ABSTRACT

This review comprehensively assesses the epidemiology, interaction, and impact on patient outcomes of perioperative sleep disorders (SD) and perioperative neurocognitive disorders (PND) in the elderly. The incidence of SD and PND during the perioperative period in older adults is alarmingly high, with SD significantly contributing to the occurrence of postoperative delirium. However, the clinical evidence linking SD to PND remains insufficient, despite substantial preclinical data. Therefore, this study focuses on the underlying mechanisms between SD and PND, underscoring that potential mechanisms driving SD-induced PND include uncontrolled central nervous inflammation, blood-brain barrier disruption, circadian rhythm disturbances, glial cell dysfunction, neuronal and synaptic abnormalities, impaired central metabolic waste clearance, gut microbiome dysbiosis, hippocampal oxidative stress, and altered brain network connectivity. Additionally, the review also evaluates the effectiveness of various sleep interventions, both pharmacological and nonpharmacological, in mitigating PND. Strategies such as earplugs, eye masks, restoring circadian rhythms, physical exercise, noninvasive brain stimulation, dexmedetomidine, and melatonin receptor agonists have shown efficacy in reducing PND incidence. The impact of other sleep-improvement drugs (e.g., orexin receptor antagonists) and methods (e.g., cognitive-behavioral therapy for insomnia) on PND is still unclear. However, certain drugs used for treating SD (e.g., antidepressants and first-generation antihistamines) may potentially aggravate PND. By providing valuable insights and references, this review aimed to enhance the understanding and management of PND in older adults based on SD.

8.
Adv Funct Mater ; 34(8)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38828467

ABSTRACT

Most nanomedicines require efficient in vivo delivery to elicit diagnostic and therapeutic effects. However, en route to their intended tissues, systemically administered nanoparticles often encounter delivery barriers. To describe these barriers, we propose the term "nanoparticle blood removal pathways" (NBRP), which summarizes the interactions between nanoparticles and the body's various cell-dependent and cell-independent blood clearance mechanisms. We reviewed nanoparticle design and biological modulation strategies to mitigate nanoparticle-NBRP interactions. As these interactions affect nanoparticle delivery, we studied the preclinical literature from 2011-2021 and analyzed nanoparticle blood circulation and organ biodistribution data. Our findings revealed that nanoparticle surface chemistry affected the in vivo behavior more than other nanoparticle design parameters. Combinatory biological-PEG surface modification improved the blood area under the curve by ~418%, with a decrease in liver accumulation of up to 47%. A greater understanding of nanoparticle-NBRP interactions and associated delivery trends will provide new nanoparticle design and biological modulation strategies for safer, more effective, and more efficient nanomedicines.

9.
J Agric Food Chem ; 72(22): 12752-12761, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38779924

ABSTRACT

This study investigated the transformation of polyphenols, including free and bound polyphenols during the fermentation of wolfberry juice by Lactobacillus plantarum NCU137. Results indicated that fermentation significantly increased the free polyphenols content and released bound polyphenols, enhancing the antioxidant activity. Analysis showed that there were 19 free polyphenols, mainly scopoletin, pyrogallol, and dihydroferulic acid, and 16 bound polyphenols, especially p-coumaric acid, feruloyl hexoside, and caffeic acid. A significant correlation was observed between the generation and degradation of polyphenols, and specific bound polyphenols peaked during the 24-48 h fermentation. Furthermore, reduced surface roughness and galacturonic acid content in wolfberry residue, along with increased pectinase activity, suggested substantial pectin degradation in the cell wall, which may be associated with the release of polyphenols, due to pectin serving as carriers for bound polyphenols. The fermentation also increased polyphenol oxidase and peroxidase activity, contributing to polyphenol breakdown. These findings provide insights for improving wolfberry juice production.


Subject(s)
Antioxidants , Fermentation , Fruit and Vegetable Juices , Fruit , Lactobacillus plantarum , Lycium , Polyphenols , Lactobacillus plantarum/metabolism , Lactobacillus plantarum/chemistry , Polyphenols/metabolism , Polyphenols/chemistry , Antioxidants/metabolism , Antioxidants/chemistry , Fruit and Vegetable Juices/analysis , Fruit/chemistry , Fruit/metabolism , Fruit/microbiology , Lycium/chemistry , Lycium/metabolism , Pectins/metabolism , Pectins/chemistry
10.
Am Heart J ; 274: 65-74, 2024 08.
Article in English | MEDLINE | ID: mdl-38701961

ABSTRACT

BACKGROUND: There has not been a consensus on the prothesis sizing strategy in type 0 bicuspid aortic stenosis (AS) patients undergoing transcatheter aortic valve replacement (TAVR). Modifications to standard annular sizing strategies might be required due to the distinct anatomical characteristics. We have devised a downsizing strategy for TAVR using a self-expanding valve specifically for patients with type 0 bicuspid AS. The primary aim of this study is to compare the safety and efficacy of downsizing strategy with the Standard Annulus Sizing Strategy in TAVR for patients with type 0 bicuspid AS. TRIAL DESIGN: It is a prospective, multi-center, superiority, single-blinded, randomized controlled trial comparing the Down Sizing and Standard Annulus Sizing Strategy in patients with type 0 bicuspid aortic stenosis undergoing transcatheter aortic valve replacement. Eligible participants will include patients with severe type 0 bicuspid AS, as defined by criteria such as mean gradient across aortic valve ≥40 mmHg, peak aortic jet velocity ≥4.0 m/s, aortic valve area (AVA) ≤1.0 cm², or AVA index ≤0.6 cm2/m2. These patients will be randomly assigned, in a 1:1 ratio, to either the Down Sizing Strategy group or the Standard Sizing Strategy group. In the Down Sizing Strategy group, a valve one size smaller will be implanted if the "waist sign" manifests along with less than mild regurgitation during balloon pre-dilatation. The primary end point of the study is a composite of VARC-3 defined device success, absence of both permanent pacemaker implantation due to high-degree atrioventricular block and new-onset complete left bundle branch block. CONCLUSION: This study will compare the safety and efficacy of Down Sizing Strategy with the Standard Annulus Sizing Strategy and provide valuable insights into the optimal approach for sizing in TAVR patients with type 0 bicuspid AS. We hypothesize that the Down Sizing Strategy will demonstrate superiority when compared to the Standard Annulus Sizing Strategy. (Down Sizing Strategy (HANGZHOU Solution) vs Standard Sizing Strategy TAVR in Bicuspid Aortic Stenosis (Type 0) (TAILOR-TAVR), NCT05511792).


Subject(s)
Aortic Valve Stenosis , Bicuspid Aortic Valve Disease , Heart Valve Prosthesis , Prosthesis Design , Transcatheter Aortic Valve Replacement , Humans , Transcatheter Aortic Valve Replacement/methods , Aortic Valve Stenosis/surgery , Bicuspid Aortic Valve Disease/surgery , Bicuspid Aortic Valve Disease/complications , Prospective Studies , Single-Blind Method , Aortic Valve/surgery , Aortic Valve/abnormalities , Aortic Valve/diagnostic imaging , Male , Female
11.
Cancer Cell Int ; 24(1): 172, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750489

ABSTRACT

BACKGROUND: Cervical cancer is a human papillomavirus (HPV)-related disease. HPV type 16 (HPV16), which is the predominant cause of cervical cancer, can encode miRNAs (HPV16-miRNAs). However, the role of HPV16-miRNAs in the pathogenesis of cervical cancer remains unclear. METHODS: Human cervical cancer cell lines SiHa (HPV16-positive) and C33A (HPV-negative), and cervical cancer tissues were collected to investigate the expression levels of two HPV16-miRNAs (HPV16-miR-H1 and HPV16-miR-H6). The overexpression and knockdown of HPV16-miR-H1 and HPV16-miR-H6 were performed using the lentiviral vector system and miRNA inhibitors, respectively. RNA-sequencing (RNA-seq) analysis and H3K27ac chromatin immunoprecipitation and sequencing (CHIP-seq) experiments were utilized to explore the roles of HPV16-miR-H1 and HPV16-miR-H6 facilitated by enhancers. CCK8, EdU, transwell, and wound healing assays were performed to verify the effects of HPV16-miR-H1 and HPV16-miR-H6 on cell proliferation and migration. RESULTS: HPV16-miR-H1 and HPV16-miR-H6 were highly expressed in both SiHa cells and tissue samples from HPV16-positive cervical cancer patients. RNA-seq analysis showed that HPV16-miR-H1 and HPV16-miR-H6 induced the upregulation of numerous tumor progression-associated genes. H3K27ac CHIP-seq experiments further revealed that HPV16-miR-H1 and HPV16-miR-H6 modulated the expression of critical genes by regulating their enhancer activity. The functional study demonstrated that HPV16-miR-H1 and HPV16-miR-H6 increased the migratory capacity of SiHa cells. CONCLUSIONS: Our data shed light on the role of HPV16-encoded miRNAs in cervical cancer, particularly emphasizing their involvement in the miRNA-enhancer-target gene system. This novel regulatory mechanism of HPV16-miRNAs provides new insights and approaches for the development of therapeutic strategies by targeting HPV16-positive cervical cancer.

12.
Regen Biomater ; 11: rbae043, 2024.
Article in English | MEDLINE | ID: mdl-38779348

ABSTRACT

The incidence of intrauterine adhesions (IUA) has increased with the rising utilization of intrauterine surgery. The postoperative physical barrier methods commonly used, such as balloons and other fillers, have limited effectiveness and may even cause further damage to the remaining endometrial tissue. Herein, we developed an injectable thermosensitive hydrogel using Pluronic F127/F68 as pharmaceutical excipients and curcumin as a natural active molecule. The hydrogel effectively addresses solubility and low bioavailability issues associated with curcumin. In vitro, drug release assays revealed that the amorphous curcumin hydrogel promotes dissolution and sustained release of curcumin. In vitro experiments reveal high biocompatibility of the hydrogel and its ability to enhance vascular formation while inhibiting the expression of fibrotic factor TGF-ß1. To assess the effectiveness of preventing IUAs, in vivo experiments were conducted using IUA rats and compared with a class III medical device, a new-crosslinked hyaluronic acid (NCHA) gel. According to the study, curcumin hydrogel is more effective than the NCHA group in improving the regeneration of the endometrium, increasing the blood supply to the endometrium and reducing the abnormal deposition of fibrin, thus preventing IUA more effectively. This study provides a promising strategy for treating and preventing IUA.

13.
Insights Imaging ; 15(1): 125, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816554

ABSTRACT

OBJECTIVE: To observe prosthetic-associated subclinical thrombotic events (PASTE) after transcatheter aortic valve implantation (TAVI) by cardiac CTA, and assess their impact on long-term patient outcomes. MATERIALS: We prospectively and consecutively enrolled 188 patients with severe aortic stenosis treated with TAVI from February 2014 to April 2017. At 5 years, 61 of 141 survived patients who had completed annual follow-up CTA (≥ 5 years) were included. We analyzed PASTE by CTA, including hypoattenuated leaflet thickening (HALT), sinus filling defect (SFD), and prosthesis filling defect (PFD). The primary outcome was a major adverse cardiovascular composite outcome (MACCO) of stroke, cardiac re-hospitalization, and bioprosthetic valve dysfunction (BVD); the secondary outcomes were bioprosthetic hemodynamics deterioration (PGmean) and cardiac dysfunction (LVEF). RESULTS: During a median follow-up time of 5.25 years, long-term incidence of HALT, SFD, and PFD were 54.1%, 37.7%, and 73.8%, respectively. In the primary outcome, SFD and early SFD were associated with the MACCO (SFD: p = 0.005; early SFD: p = 0.018), and SFD was a predictor of MACCO (HR: 2.870; 95% CI: 1.010 to 8.154, p = 0.048). In the secondary outcomes, HALT was associated with increased PGmean (p = 0.031), while persistent HALT was correlated with ΔPGmean (ß = 0.38, p = 0.035). SFD was negatively correlated with ΔLVEF (ß = -0.39, p = 0.041), and early SFD was negatively correlated with LVEF and ΔLVEF (LVEF: r = -0.50, p = 0.041; ΔLVEF: r = -0.53, p = 0.030). CONCLUSIONS: PASTE were associated with adverse long-term outcomes, bioprosthetic hemodynamics deterioration, and cardiac dysfunction. In particular, SFD was a predictor of MACCO and may be a potential target for anticoagulation after TAVI (NCT02803294). REGISTRATION: URL: https://www. CLINICALTRIALS: gov ; Unique identifier: NCT02803294. CRITICAL RELEVANCE STATEMENT: PASTE, especially SFD, after TAVI based on cardiac CTA findings impacts the long-term outcomes of patients which is a predictor of long-term major adverse outcomes in patients and may be a potential target for anticoagulation after TAVI. KEY POINTS: Transcatheter aortic valve implantation is being used more often; associated subclinical thromboses have not been thoroughly evaluated. Prosthetic-associated subclinical thrombotic events were associated with adverse outcomes, bioprosthetic hemodynamics deterioration, and cardiac dysfunction. Studies should be directed at these topics to determine if they should be intervened upon.

14.
Adv Mater ; 36(28): e2403986, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38663008

ABSTRACT

Cancer nanomedicines predominately rely on transport processes controlled by tumor-associated endothelial cells to deliver therapeutic and diagnostic payloads into solid tumors. While the dominant role of this class of endothelial cells for nanoparticle transport and tumor delivery is established in animal models, the translational potential in human cells needs exploration. Using primary human breast cancer as a model, the differential interactions of normal and tumor-associated endothelial cells with clinically relevant nanomedicine formulations are explored and quantified. Primary human breast cancer-associated endothelial cells exhibit up to ≈2 times higher nanoparticle uptake than normal human mammary microvascular endothelial cells. Super-resolution imaging studies reveal a significantly higher intracellular vesicle number for tumor-associated endothelial cells, indicating a substantial increase in cellular transport activities. RNA sequencing and gene expression analysis indicate the upregulation of transport-related genes, especially motor protein genes, in tumor-associated endothelial cells. Collectively, the results demonstrate that primary human breast cancer-associated endothelial cells exhibit enhanced interactions with nanomedicines, suggesting a potentially significant role for these cells in nanoparticle tumor delivery in human patients. Engineering nanoparticles that leverage the translational potential of tumor-associated endothelial cell-mediated transport into human solid tumors may lead to the development of safer and more effective clinical cancer nanomedicines.


Subject(s)
Breast Neoplasms , Endothelial Cells , Nanomedicine , Nanoparticles , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Endothelial Cells/metabolism , Nanoparticles/chemistry , Nanomedicine/methods , Female
15.
Ecotoxicol Environ Saf ; 277: 116341, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38653022

ABSTRACT

Infertility is a growing health concern among many couples worldwide. Men account for half of infertility cases. CatSper, a sperm-specific Ca2+ channel, is expressed on the cell membrane of mammalian sperm. CatSper plays an important role in male fertility because it facilitates the entry of Ca2+ necessary for the rapid change in sperm motility, thereby allowing it to navigate the hurdles of the female reproductive tract and successfully locate the egg. Many pollutants present in the environment have been shown to affect the functions of CatSper and sperm, which is a matter of capital importance to understanding and solving male infertility issues. Environmental pollutants can act as partial agonists or inhibitors of CatSper or exhibit a synergistic effect. In this article, we briefly describe the structure, functions, and regulatory mechanisms of CatSper, and discuss the body of literature covering the effects of environmental pollutants on CatSper.


Subject(s)
Calcium Channels , Environmental Pollutants , Infertility, Male , Animals , Humans , Male , Calcium Channels/drug effects , Environmental Pollutants/toxicity , Infertility, Male/chemically induced , Sperm Motility/drug effects , Spermatozoa/drug effects
16.
IEEE Comput Graph Appl ; PP2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630562

ABSTRACT

Caricature generation aims to translate portrait photos into caricatures with exaggerated and hand-drawn artistic styles. Previous methods faced challenges in creating diverse and meaningful exaggeration effects, yielding unsatisfactory and uncontrollable results. To overcome this, we proposed ETCari, a novel weakly supervised exaggeration transfer network. ETCari enables the learning of diverse exaggeration caricature styles from various artists, better meeting individual customization requirements and achieving diversified exaggeration while retaining identity features. Specifically, we use the thin-plate spline control point deformation field as the ground truth, serving as the loss for weakly supervised learning to address the challenge of no labels. We convert input to an intermediate modality for domain adaptation, training a teacher model. Subsequently, we perform cross-modal knowledge distillation to train the student model, simplifying preprocessing during inference and avoiding the impact of face parser errors. Experiments on the WebCaricature dataset demonstrate that ETCari effectively performs exaggeration transfer, generating appealing caricatures.

17.
Adv Sci (Weinh) ; 11(22): e2400749, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38554394

ABSTRACT

Cellular senescence is a significant contributor to intervertebral disc aging and degeneration. However, the application of senotherapies, such as senomorphics targeting senescence markers and the senescence-associated secretory phenotype (SASP), remains limited due to challenges in precise delivery. Given that the natural killer group 2D (NKG2D) ligands are increased on the surface of senescent nucleus pulposus (NP) cells, the NKG2D-overexpressing NP cell membranes (NNPm) are constructed, which is expected to achieve a dual targeting effect toward senescent NP cells based on homologous membrane fusion and the NKG2D-mediated immunosurveillance mechanism. Then, mesoporous silica nanoparticles carrying a peroxisome proliferator-activated receptor-É£ coactivator 1α (PGC1α)inducer (SP) are coated with NNPm (SP@NNPm) and it is found that SP@NNPm selectively targets senescent NP cells, and the SP cores exhibit pH-responsive drug release. Moreover, SP@NNPm effectively induces PGC1α-mediated mitochondrial biogenesis and mitigates senescence-associated markers induced by oxidative stress and the SASP, thereby alleviating puncture-induced senescence and disc degeneration. This dual-targeting nanotherapeutic system represents a novel approach to delivery senomorphics for disc degeneration treatment.


Subject(s)
Cellular Senescence , Intervertebral Disc Degeneration , NK Cell Lectin-Like Receptor Subfamily K , Nanoparticles , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Animals , Male , Rats , Cell Membrane/metabolism , Cellular Senescence/drug effects , Disease Models, Animal , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/drug therapy , NK Cell Lectin-Like Receptor Subfamily K/metabolism , NK Cell Lectin-Like Receptor Subfamily K/genetics , Nucleus Pulposus/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics
18.
J Leukoc Biol ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38513294

ABSTRACT

Macropinocytosis is a large-scale endocytosis process that is primarily observed in phagocytes as part of their cellular function to ingest antigens. Once phagocytes encounter gram-negative bacteria, the receptor proteins identify lipopolysaccharides (LPSs), which trigger radical membrane ruffles that gradually change to cup-like structures. The open area of the cups closes to generate vesicles called macropinosomes. The target bacteria are isolated by the cups and engulfed by the cells as the cups close. In addition to its ingestion function, macropinocytosis also regulates the AKT pathway in macrophages. In the current study, we report that macropinocytic cups are critical for LPS-induced AKT phosphorylation (pAKT) and cytokine expression in macrophages. High-resolution scanning electron microscope (SEM) observations detailed the macropinocytic cup structures induced by LPS stimulation. Confocal microscopy revealed that AKT and the kinase molecule mTORC2 were localized in the cups. The biochemical analysis showed that macropinocytosis inhibition blocked LPS-induced pAKT. RNA-Seq, qPCR, and ELISA analyses revealed that the inhibition of macropinocytosis or the AKT pathway causes a decrease in the expression of pro-inflammatory cytokines IL-6 and IL-1α. Moreover, activation of the transcription factor NF-κB, which regulates the cytokine expression downstream of the AKT/IκB pathway, was hindered when macropinocytosis or AKT were inhibited. These results indicate that LPS-induced macropinocytic cups function as signal platforms for the AKT pathway to regulate the cytokine expression by modulating NF-κB activity in LPS-stimulated macrophages. Based on these findings, we propose that macropinocytosis may be a good therapeutic target for controlling cytokine expression.

19.
Bioorg Chem ; 146: 107278, 2024 May.
Article in English | MEDLINE | ID: mdl-38484586

ABSTRACT

VEGFR, a receptor tyrosine kinase inhibitor (TKI), is an important regulatory factor that promotes angiogenesis and vascular permeability. It plays a significant role in processes such as tumor angiogenesis, tumor cell invasion, and metastasis. VEGFR is mainly composed of three subtypes: VEGFR-1, VEGFR-2, and VEGFR-3. Among them, VEGFR-2 is the crucial signaling receptor for VEGF, which is involved in various pathological and physiological functions. At present, VEGFR-2 is closely related to a variety of cancers, such as non-small cell lung cancer (NSCLC), Hepatocellular carcinoma, Renal cell carcinoma, breast cancer, gastric cancer, glioma, etc. Consequently, VEGFR-2 serves as a crucial target for various cancer treatments. An increasing number of VEGFR inhibitors have been discovered to treat cancer, and they have achieved tremendous success in the clinic. Nevertheless, VEGFR inhibitors often exhibit severe cytotoxicity, resistance, and limitations in indications, which weaken the clinical therapeutic effect. In recent years, many small molecule inhibitors targeting VEGFR have been identified with anti-drug resistance, lower cytotoxicity, and better affinity. Here, we provide an overview of the structure and physiological functions of VEGFR, as well as some VEGFR inhibitors currently in clinical use. Also, we summarize the in vivo and in vitro activities, selectivity, structure-activity relationship, and therapeutic or preventive use of VEGFR small molecule inhibitors reported in patents in the past three years (2021-2023), thereby presenting the prospects and insights for the future development of targeted VEGFR inhibitors.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Kidney Neoplasms , Lung Neoplasms , Humans , Vascular Endothelial Growth Factor Receptor-1 , Vascular Endothelial Growth Factor Receptor-2 , Carcinoma, Non-Small-Cell Lung/drug therapy , Angiogenesis Inhibitors/pharmacology , Lung Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Kidney Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemistry
20.
Front Endocrinol (Lausanne) ; 15: 1340625, 2024.
Article in English | MEDLINE | ID: mdl-38532900

ABSTRACT

The intervertebral disc is not isolated from other tissues. Recently, abundant research has linked intervertebral disc homeostasis and degeneration to various systemic diseases, including obesity, metabolic syndrome, and diabetes. Organokines are a group of diverse factors named for the tissue of origin, including adipokines, osteokines, myokines, cardiokines, gastrointestinal hormones, and hepatokines. Through endocrine, paracrine, and autocrine mechanisms, organokines modulate energy homeostasis, oxidative stress, and metabolic balance in various tissues to mediate cross-organ communication. These molecules are involved in the regulation of cellular behavior, inflammation, and matrix metabolism under physiological and pathological conditions. In this review, we aimed to summarize the impact of organokines on disc homeostasis and degeneration and the underlying signaling mechanism. We focused on the regulatory mechanisms of organokines to provide a basis for the development of early diagnostic and therapeutic strategies for disc degeneration.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Humans , Adipokines/metabolism , Obesity/metabolism , Homeostasis
SELECTION OF CITATIONS
SEARCH DETAIL
...