Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
Add more filters











Publication year range
1.
Nat Biomed Eng ; 8(9): 1092-1108, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39251765

ABSTRACT

The efficacy of fluorescence-guided surgery in facilitating the real-time delineation of tumours depends on the optical contrast of tumour tissue over healthy tissue. Here we show that CJ215-a commercially available, renally cleared carbocyanine dye sensitive to apoptosis, and with an absorption and emission spectra suitable for near-infrared fluorescence imaging (wavelengths of 650-900 nm) and shortwave infrared (SWIR) fluorescence imaging (900-1,700 nm)-can facilitate fluorescence-guided tumour screening, tumour resection and the assessment of wound healing. In tumour models of either murine or human-derived breast, prostate and colon cancers and of fibrosarcoma, and in a model of intraperitoneal carcinomatosis, imaging of CJ215 with ambient light allowed for the delineation of nearly all tumours within 24 h after intravenous injection of the dye, which was minimally taken up by healthy organs. At later timepoints, CJ215 provided tumour-to-muscle contrast ratios up to 100 and tumour-to-liver contrast ratios up to 18. SWIR fluorescence imaging with the dye also allowed for quantifiable non-contact wound monitoring through commercial bandages. CJ215 may be compatible with existing and emerging clinical solutions.


Subject(s)
Fluorescent Dyes , Optical Imaging , Animals , Humans , Mice , Optical Imaging/methods , Fluorescent Dyes/chemistry , Female , Male , Neoplasms/diagnostic imaging , Neoplasms/surgery , Cell Line, Tumor , Wound Healing , Carbocyanines/chemistry , Spectroscopy, Near-Infrared/methods
2.
Sci Rep ; 14(1): 15140, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956234

ABSTRACT

Rapamycin slows cystogenesis in murine models of polycystic kidney disease (PKD) but failed in clinical trials, potentially due to insufficient drug dosing. To improve drug efficiency without increasing dose, kidney-specific drug delivery may be used. Mesoscale nanoparticles (MNP) selectively target the proximal tubules in rodents. We explored whether MNPs can target cystic kidney tubules and whether rapamycin-encapsulated-MNPs (RapaMNPs) can slow cyst growth in Pkd1 knockout (KO) mice. MNP was intravenously administered in adult Pkd1KO mice. Serum and organs were harvested after 8, 24, 48 or 72 h to measure MNP localization, mTOR levels, and rapamycin concentration. Pkd1KO mice were then injected bi-weekly for 6 weeks with RapaMNP, rapamycin, or vehicle to determine drug efficacy on kidney cyst growth. Single MNP injections lead to kidney-preferential accumulation over other organs, specifically in tubules and cysts. Likewise, one RapaMNP injection resulted in higher drug delivery to the kidney compared to the liver, and displayed sustained mTOR inhibition. Bi-weekly injections with RapaMNP, rapamycin or vehicle for 6 weeks resulted in inconsistent mTOR inhibition and little change in cyst index, however. MNPs serve as an effective short-term, kidney-specific delivery system, but long-term RapaMNP failed to slow cyst progression in Pkd1KO mice.


Subject(s)
Disease Models, Animal , Mice, Knockout , Nanoparticles , Polycystic Kidney Diseases , Sirolimus , Animals , Sirolimus/administration & dosage , Sirolimus/pharmacology , Mice , Polycystic Kidney Diseases/drug therapy , Polycystic Kidney Diseases/metabolism , Polycystic Kidney Diseases/genetics , Polycystic Kidney Diseases/pathology , Nanoparticles/administration & dosage , TOR Serine-Threonine Kinases/metabolism , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism , Kidney/metabolism , Kidney/drug effects , Kidney/pathology , Drug Delivery Systems , Male
3.
Cancer Cell ; 42(7): 1138-1141, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38848719

ABSTRACT

While cancer research and care have benefited from revolutionary advances in the ability to manipulate and study living systems, the field is limited by a lack of synergy to leverage the power of engineering approaches. Cancer engineering is an emerging subfield of biomedical engineering that unifies engineering and cancer biology to better understand, diagnose, and treat cancer. We highlight cancer engineering's unique challenges, the importance of creating dedicated centers and departments that enable translational collaboration, and educational approaches to arm a new generation of scientists with engineering expertise and a fundamental understanding of cancer biology to transform clinical cancer care.


Subject(s)
Neoplasms , Animals , Humans , Biomedical Engineering/methods , Biomedical Engineering/trends , Neoplasms/therapy , Neoplasms/genetics
4.
J Am Chem Soc ; 146(18): 12454-12462, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38687180

ABSTRACT

Quantum defects in single-walled carbon nanotubes promote exciton localization, which enables potential applications in biodevices and quantum light sources. However, the effects of local electric fields on the emissive energy states of quantum defects and how they can be controlled are unexplored. Here, we investigate quantum defect sensitization by engineering an intrinsically disordered protein to undergo a phase change at a quantum defect site. We designed a supercharged single-chain antibody fragment (scFv) to enable a full ligand-induced folding transition from an intrinsically disordered state to a compact folded state in the presence of a cytokine. The supercharged scFv was conjugated to a quantum defect to induce a substantial local electric change upon ligand binding. Employing the detection of a proinflammatory biomarker, interleukin-6, as a representative model system, supercharged scFv-coupled quantum defects exhibited robust fluorescence wavelength shifts concomitant with the protein folding transition. Quantum chemical simulations suggest that the quantum defects amplify the optical response to the localization of charges produced upon the antigen-induced folding of the proteins, which is difficult to achieve in unmodified nanotubes. These findings portend new approaches to modulate quantum defect emission for biomarker sensing and protein biophysics and to engineer proteins to modulate binding signal transduction.


Subject(s)
Quantum Theory , Single-Chain Antibodies/chemistry , Nanotubes, Carbon/chemistry , Protein Folding , Interleukin-6 , Humans , Intrinsically Disordered Proteins/chemistry
5.
Gynecol Oncol Rep ; 51: 101330, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38356691

ABSTRACT

Given the tubal origin of high-grade serous ovarian cancer (HGSC), we sought to investigate intrauterine lavage (IUL) as a novel method of biomarker detection. IUL and serum samples were collected from patients with HGSC or benign pathology. Although CA-125 and HE4 concentrations were significantly higher in IUL samples compared to serum, they were similar between IUL samples from patients with HGSC vs benign conditions. In contrast, CA-125 and HE4 serum concentrations differed between HGSC and benign pathology (P =.002 for both). IUL and tumor samples from patients with HGSC were subjected to targeted panel sequencing and droplet digital PCR (ddPCR). Tumor mutations were found in 75 % of matched IUL samples. Serum CA-125 and HE4 biomarker levels allowed for better differentiation of HGSC and benign pathology compared to IUL samples. We believe using IUL for early detection of HGSC requires optimization, and current strategies should focus on prevention until early detection strategies improve.

6.
Nat Commun ; 14(1): 8340, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38097573

ABSTRACT

Drug nanoaggregates are particles that can deleteriously cause false positive results during drug screening efforts, but alternatively, they may be used to improve pharmacokinetics when developed for drug delivery purposes. The structural features of molecules that drive nanoaggregate formation remain elusive, however, and the prediction of intracellular aggregation and rational design of nanoaggregate-based carriers are still challenging. We investigate nanoaggregate self-assembly mechanisms using small molecule fragments to identify the critical molecular forces that contribute to self-assembly. We find that aromatic groups and hydrogen bond acceptors/donors are essential for nanoaggregate formation, suggesting that both π-π stacking and hydrogen bonding are drivers of nanoaggregation. We apply structure-assembly-relationship analysis to the drug sorafenib and discover that nanoaggregate formation can be predicted entirely using drug fragment substructures. We also find that drug nanoaggregates are stabilized in an amorphous core-shell structure. These findings demonstrate that rational design can address intracellular aggregation and pharmacologic/delivery challenges in conventional and fragment-based drug development processes.


Subject(s)
Molecular Dynamics Simulation , Pharmaceutical Preparations
7.
Nano Lett ; 23(23): 10687-10695, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-37889874

ABSTRACT

Dysregulated lipid metabolism contributes to neurodegenerative pathologies and neurological decline in lysosomal storage disorders as well as more common neurodegenerative diseases. Niemann-Pick type A (NPA) is a fatal neurodegenerative lysosomal storage disease characterized by abnormal sphingomyelin accumulation in the endolysosomal lumen. The ability to monitor abnormalities in lipid homeostasis intracranially could improve basic investigations and the development of effective treatment strategies. We investigated the carbon nanotube-based detection of intracranial lipid content. We found that the near-infrared emission of a carbon nanotube-based lipid sensor responds to lipid accumulation in neuronal and in vivo models of NPA. The nanosensor detected lipid accumulation intracranially in an acid sphingomyelinase knockout mouse via noninvasive near-infrared spectroscopy. This work indicates a tool to improve drug development processes in NPA, other lysosomal storage diseases, and neurodegenerative diseases.


Subject(s)
Lysosomal Storage Diseases , Nanotubes, Carbon , Neurodegenerative Diseases , Animals , Mice , Lysosomal Storage Diseases/pathology , Sphingomyelins , Neurons/metabolism , Lysosomes/metabolism
8.
J Nucl Med ; 64(10): 1647-1653, 2023 10.
Article in English | MEDLINE | ID: mdl-37620049

ABSTRACT

Shortwave infrared (900-1,700 nm) fluorescence imaging (SWIRFI) has shown significant advantages over visible (400-650 nm) and near-infrared (700-900 nm) fluorescence imaging (reduced autofluorescence, improved contrast, tissue resolution, and depth sensitivity). However, there is a major lag in the clinical translation of preclinical SWIRFI systems and targeted SWIRFI probes. Methods: We preclinically show that the pH low-insertion peptide conjugated to indocyanine green (pHLIP ICG), currently in clinical trials, is an excellent candidate for cancer-targeted SWIRFI. Results: pHLIP ICG SWIRFI achieved picomolar sensitivity (0.4 nM) with binary and unambiguous tumor screening and resection up to 96 h after injection in an orthotopic breast cancer mouse model. SWIRFI tumor screening and resection had ambient light resistance (possible without gating or filtering) with outstanding signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) values at exposures from 10 to 0.1 ms. These SNR and CNR values were also found for the extended emission of pHLIP ICG in vivo (>1,100 nm, 300 ms). Conclusion: SWIRFI sensitivity and ambient light resistance enabled continued tracer clearance tracking with unparalleled SNR and CNR values at video rates for tumor delineation (achieving a tumor-to-muscle ratio above 20). In total, we provide a direct precedent for the democratic translation of an ambient light resistant SWIRFI and pHLIP ICG ecosystem, which can instantly improve tumor resection.


Subject(s)
Indocyanine Green , Neoplasms , Animals , Mice , Ecosystem , Optical Imaging/methods
9.
Nat Rev Cancer ; 23(9): 581-599, 2023 09.
Article in English | MEDLINE | ID: mdl-37353679

ABSTRACT

The interactions among tumour cells, the tumour microenvironment (TME) and non-tumour tissues are of interest to many cancer researchers. Micro-engineering approaches and nanotechnologies are under extensive exploration for modelling these interactions and measuring them in situ and in vivo to investigate therapeutic vulnerabilities in cancer and extend a systemic view of tumour ecosystems. Here we highlight the greatest opportunities for improving the understanding of tumour ecosystems using microfluidic devices, bioprinting or organ-on-a-chip approaches. We also discuss the potential of nanosensors that can transmit information from within the TME or elsewhere in the body to address scientific and clinical questions about changes in chemical gradients, enzymatic activities, metabolic and immune profiles of the TME and circulating analytes. This Review aims to connect the cancer biology and engineering communities, presenting biomedical technologies that may expand the methodologies of the former, while inspiring the latter to develop approaches for interrogating cancer ecosystems.


Subject(s)
Ecosystem , Neoplasms , Humans , Neoplasms/metabolism , Tumor Microenvironment
10.
Nat Chem Biol ; 19(12): 1448-1457, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37322156

ABSTRACT

Autophagy is a cellular process with important functions that drive neurodegenerative diseases and cancers. Lysosomal hyperacidification is a hallmark of autophagy. Lysosomal pH is currently measured by fluorescent probes in cell culture, but existing methods do not allow for quantitative, transient or in vivo measurements. In the present study, we developed near-infrared optical nanosensors using organic color centers (covalent sp3 defects on carbon nanotubes) to measure autophagy-mediated endolysosomal hyperacidification in live cells and in vivo. The nanosensors localize to the lysosomes, where the emission band shifts in response to local pH, enabling spatial, dynamic and quantitative mapping of subtle changes in lysosomal pH. Using the sensor, we observed cellular and intratumoral hyperacidification on administration of mTORC1 and V-ATPase modulators, revealing that lysosomal acidification mirrors the dynamics of S6K dephosphorylation and LC3B lipidation while diverging from p62 degradation. This sensor enables the transient and in vivo monitoring of the autophagy-lysosomal pathway.


Subject(s)
Nanotubes, Carbon , Autophagy/physiology , Mechanistic Target of Rapamycin Complex 1/metabolism , Lysosomes/metabolism , Hydrogen-Ion Concentration
11.
ACS Chem Biol ; 18(5): 1237-1245, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37070948

ABSTRACT

Hematoxylin & eosin (H&E) is the gold standard histological stain used for medical diagnosis and has been used for over a century. Herein, we examined the near-infrared II (NIR-II) fluorescence of this stain. We observed significant NIR-II emission from the hematoxylin component of the H&E stain. We found that the emission intensity, using the common aluminum(III) hematoxylin mordant, could be modulated by the availability of endogenous iron(III), and this emission intensity increased at higher oxidative stress. Our mechanistic investigations found that hematoxylin emission reported the nuclear translocation of the iron via the protein ferritin. In human tumor tissue samples, oxidative stress biomarkers correlated with hematoxylin NIR-II emission intensity. Emission response of the stain was also observed in human Alzheimer's disease brain tissue regions affected by disease progression, suggesting that ferritin nuclear translocation is preserved in these regions as an oxidative stress response. These findings indicate that NIR-II emission from the H&E stain provides a new source of redox information in tissues with implications for biomedical research and clinical practice.


Subject(s)
Coloring Agents , Oxidative Stress , Humans , Eosine Yellowish-(YS) , Ferric Compounds , Ferritins , Hematoxylin , Iron , Oxidative Stress/physiology
12.
Nat Mater ; 22(3): 391-399, 2023 03.
Article in English | MEDLINE | ID: mdl-36864161

ABSTRACT

Medulloblastoma is the most common malignant paediatric brain tumour, with ~30% mediated by Sonic hedgehog signalling. Vismodegib-mediated inhibition of the Sonic hedgehog effector Smoothened inhibits tumour growth but causes growth plate fusion at effective doses. Here, we report a nanotherapeutic approach targeting endothelial tumour vasculature to enhance blood-brain barrier crossing. We use fucoidan-based nanocarriers targeting endothelial P-selectin to induce caveolin-1-dependent transcytosis and thus nanocarrier transport into the brain tumour microenvironment in a selective and active manner, the efficiency of which is increased by radiation treatment. In a Sonic hedgehog medulloblastoma animal model, fucoidan-based nanoparticles encapsulating vismodegib exhibit a striking efficacy and marked reduced bone toxicity and drug exposure to healthy brain tissue. Overall, these findings demonstrate a potent strategy for targeted intracranial pharmacodelivery that overcomes the restrictive blood-brain barrier to achieve enhanced tumour-selective penetration and has therapeutic implications for diseases within the central nervous system.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Animals , Hedgehog Proteins , Blood-Brain Barrier , Caveolin 1 , P-Selectin , Transcytosis , Tumor Microenvironment
13.
Cancer Biol Ther ; 24(1): 2170669, 2023 12 31.
Article in English | MEDLINE | ID: mdl-36722045

ABSTRACT

In clear cell renal cell carcinoma (ccRCC), activation of hypoxic signaling induces NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4-like 2 (NDUFA4L2) expression. Over 90% of ccRCCs exhibit overexpression of NDUFA4L2, which we previously showed contributes to ccRCC proliferation and survival. The function of NDUFA4L2 in ccRCC has not been fully elucidated. NDUFA4L2 was reported to reduce mitochondrial respiration via mitochondrial complex I inhibition. We found that NDUFA4L2 expression in human ccRCC cells increases the extracellular acidification rate, indicative of elevated glycolysis. Conversely, NDUFA4L2 expression in non-cancerous kidney epithelial cells decreases oxygen consumption rate while increasing extracellular acidification rate, suggesting that a Warburg-like effect is induced by NDUFA4L2 alone. We performed mass-spectrometry (MS)-based proteomics of NDUFA4L2 associated complexes. Comparing RCC4-P (parental) ccRCC cells with RCC4 in which NDUFA4L2 is knocked out by CRISPR-Cas9 (RCC4-KO-643), we identified 3,215 proteins enriched in the NDUFA4L2 immunoprecipitates. Among the top-ranking pathways were "Metabolic Reprogramming in Cancer" and "Glycolysis Activation in Cancer (Warburg Effect)." We also show that NDUFA4L2 enhances mitochondrial fragmentation, interacts with lysosomes, and increases mitochondrial-lysosomal associations, as assessed by high-resolution fluorescence microscopy and live cell imaging. We identified 161 lysosomal proteins, including Niemann-Pick Disease Type C Intracellular Cholesterol Transporters 1 and 2 (NPC1, NPC2), that are associated with NDUFA4L2 in RCC4-P cells. RCC4-P cells have larger and decreased numbers of lysosomes relative to RCC4 NDUFA4L2 knockout cells. These findings suggest that NDUFA4L2 regulates mitochondrial-lysosomal associations and potentially lysosomal size and abundance. Consequently, NDUFA4L2 may regulate not only mitochondrial, but also lysosomal functions in ccRCC.


Subject(s)
Carcinoma, Renal Cell , Electron Transport Complex I , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Electron Transport Complex I/genetics , Kidney Neoplasms/genetics , Lysosomes , Mitochondria
14.
ACS Appl Mater Interfaces ; 14(24): 27675-27685, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35670525

ABSTRACT

Rubber band ligation is a commonly used method for the removal of tissue abnormalities. Most often, rubber band ligation is performed to remove internal hemorrhoids unresponsive to first line treatments to avoid surgery. While the procedure is considered safe, patients experience mild to significant pain and discomfort until the tissue sloughs off. As patients often require multiple bandings and sessions, reducing these side effects can have a considerable effect on patient adherence and quality of life. To reduce pain and discomfort, we developed drug-eluting rubber bands for ligation procedures. We investigated the potential for a band to elute anesthetics and drug combinations to durably manage pain for a period of up to 5 days while exhibiting similar mechanical properties to conventional rubber bands. We show that the rubber bands retain their mechanical properties despite significant drug loading. Lidocaine, released from the bands, successfully altered the calcium dynamics of cardiomyocytes in vitro and modulated heart rate in zebrafish embryos, while the bands exhibited lower cytotoxicity than conventional bands. Ex vivo studies demonstrated substantial local drug release in enteric tissues. These latex-free bands exhibited sufficient mechanical and drug-eluting properties to serve both ligation and local analgesic functions, potentially enabling pain reduction for multiple indications.


Subject(s)
Quality of Life , Zebrafish , Animals , Humans , Ligation/adverse effects , Ligation/methods , Pain/etiology , Treatment Outcome
15.
Circ Res ; 130(10): 1550-1564, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35430873

ABSTRACT

BACKGROUND: Renal T cells contribute importantly to hypertension, but the underlying mechanism is incompletely understood. We reported that CD8Ts directly stimulate distal convoluted tubule cells (DCTs) to increase NCC (sodium chloride co-transporter) expression and salt reabsorption. However, the mechanistic basis of this pathogenic pathway that promotes hypertension remains to be elucidated. METHODS: We used mouse models of DOCA+salt (DOCA) treatment and adoptive transfer of CD8+ T cells (CD8T) from hypertensive animals to normotensive animals in in vivo studies. Co-culture of mouse DCTs and CD8Ts was used as in vitro model to test the effect of CD8T activation in promoting NCC-mediated sodium retention and to identify critical molecular players contributing to the CD8T-DCT interaction. Interferon (IFNγ)-KO mice and mice receiving renal tubule-specific knockdown of PDL1 were used to verify in vitro findings. Blood pressure was continuously monitored via radio-biotelemetry, and kidney samples were saved at experimental end points for analysis. RESULTS: We identified critical molecular players and demonstrated their roles in augmenting the CD8T-DCT interaction leading to salt-sensitive hypertension. We found that activated CD8Ts exhibit enhanced interaction with DCTs via IFN-γ-induced upregulation of MHC-I and PDL1 in DCTs, thereby stimulating higher expression of NCC in DCTs to cause excessive salt retention and progressive elevation of blood pressure. Eliminating IFN-γ or renal tubule-specific knockdown of PDL1 prevented T cell homing into the kidney, thereby attenuating hypertension in 2 different mouse models. CONCLUSIONS: Our results identified the role of activated CD8Ts in contributing to increased sodium retention in DCTS through the IFNγ-PDL1 pathway. These findings provide a new mechanism for T cell involvement in the pathogenesis of hypertension and reveal novel therapeutic targets.


Subject(s)
Desoxycorticosterone Acetate , Hypertension , Animals , CD8-Positive T-Lymphocytes/metabolism , Desoxycorticosterone Acetate/metabolism , Desoxycorticosterone Acetate/pharmacology , Disease Models, Animal , Hypertension/metabolism , Kidney Tubules, Distal/metabolism , Kidney Tubules, Distal/pathology , Mice , Sodium/metabolism , Sodium Chloride Symporters/metabolism , Sodium Chloride, Dietary
16.
ACS Nano ; 16(5): 7269-7283, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35420796

ABSTRACT

Amyloid-beta (Aß) deposition occurs in the early stages of Alzheimer's disease (AD), but the early detection of Aß is a persistent challenge. Herein, we engineered a near-infrared optical nanosensor capable of detecting Aß intracellularly in live cells and intracranially in vivo. The sensor is composed of single-walled carbon nanotubes functionalized with Aß wherein Aß-Aß interactions drive the response. We found that the Aß nanosensors selectively responded to Aß via solvatochromic modulation of the near-infrared emission of the nanotube. The sensor tracked Aß accumulation in live cells and, upon intracranial administration in a genetic model of AD, signaled distinct responses in aged mice. This technology enables the interrogation of molecular mechanisms underlying Aß neurotoxicity in the development of AD in living systems.


Subject(s)
Alzheimer Disease , Nanotubes, Carbon , Animals , Mice , Amyloid beta-Peptides , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics
17.
Nat Biomed Eng ; 6(3): 267-275, 2022 03.
Article in English | MEDLINE | ID: mdl-35301449

ABSTRACT

Serum biomarkers are often insufficiently sensitive or specific to facilitate cancer screening or diagnostic testing. In ovarian cancer, the few established serum biomarkers are highly specific, yet insufficiently sensitive to detect early-stage disease and to impact the mortality rates of patients with this cancer. Here we show that a 'disease fingerprint' acquired via machine learning from the spectra of near-infrared fluorescence emissions of an array of carbon nanotubes functionalized with quantum defects detects high-grade serous ovarian carcinoma in serum samples from symptomatic individuals with 87% sensitivity at 98% specificity (compared with 84% sensitivity at 98% specificity for the current best clinical screening test, which uses measurements of cancer antigen 125 and transvaginal ultrasonography). We used 269 serum samples to train and validate several machine-learning classifiers for the discrimination of patients with ovarian cancer from those with other diseases and from healthy individuals. The predictive values of the best classifier could not be attained via known protein biomarkers, suggesting that the array of nanotube sensors responds to unidentified serum biomarkers.


Subject(s)
Nanotubes, Carbon , Ovarian Neoplasms , Biomarkers, Tumor , Early Detection of Cancer , Female , Humans , Machine Learning , Ovarian Neoplasms/diagnostic imaging
18.
Adv Drug Deliv Rev ; 183: 114172, 2022 04.
Article in English | MEDLINE | ID: mdl-35189266

ABSTRACT

Nanomedicine design is often a trial-and-error process, and the optimization of formulations and in vivo properties requires tremendous benchwork. To expedite the nanomedicine research progress, data science is steadily gaining importance in the field of nanomedicine. Recently, efforts have explored the potential to predict nanomaterials synthesis and biological behaviors via advanced data analytics. Machine learning algorithms process large datasets to understand and predict various material properties in nanomedicine synthesis, pharmacologic parameters, and efficacy. "Big data" approaches may enable even larger advances, especially if researchers capitalize on data curation methods. However, the concomitant use of data curation processes needed to facilitate the acquisition and standardization of large, heterogeneous data sets, to support advanced data analytics methods such as machine learning has yet to be leveraged. Currently, data curation and data analytics areas of nanotechnology-focused data science, or 'nanoinformatics', have been proceeding largely independently. This review highlights the current efforts in both areas and the potential opportunities for coordination to advance the capabilities of data analytics in nanomedicine.


Subject(s)
Data Curation , Nanomedicine , Algorithms , Humans , Machine Learning , Nanotechnology
19.
ACS Nano ; 16(2): 3092-3104, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35049273

ABSTRACT

Nanomaterials are the subject of a range of biomedical, commercial, and environmental investigations involving measurements in living cells and tissues. Accurate quantification of nanomaterials, at the tissue, cell, and organelle levels, is often difficult, however, in part due to their inhomogeneity. Here, we propose a method that uses the distinct optical properties of a heterogeneous nanomaterial preparation in order to improve quantification at the single-cell and organelle level. We developed "hyperspectral counting", which employs diffraction-limited imaging via hyperspectral microscopy of a diverse set of fluorescent nanomaterials to estimate particle number counts in live cells and subcellular structures. A mathematical model was developed, and Monte Carlo simulations were employed, to improve the accuracy of these estimates, enabling quantification with single-cell and single-endosome resolution. We applied this nanometrology technique with single-walled carbon nanotubes and identified an upper limit of the rate of uptake into cells─approximately 3,000 nanotubes endocytosed within 30 min. In contrast, conventional region-of-interest counting results in a 230% undercount. The method identified significant heterogeneity and a broad non-Gaussian distribution of carbon nanotube uptake within cells. For example, while a particular cell contained an average of 1 nanotube per endosome, the heterogeneous distribution resulted in over 7 nanotubes localizing within some endosomes, substantially changing the accounting of subcellular nanoparticle concentration distributions. This work presents a method to quantify the cellular and subcellular concentrations of a heterogeneous carbon nanotube reference material, with implications for the nanotoxicology, drug/gene delivery, and nanosensor fields.


Subject(s)
Nanoparticles , Nanotubes, Carbon , Diagnostic Imaging , Endosomes , Nanotubes, Carbon/chemistry
20.
J Am Soc Nephrol ; 33(2): 342-356, 2022 02.
Article in English | MEDLINE | ID: mdl-34921111

ABSTRACT

BACKGROUND: Repeated administration of cisplatin causes CKD. In previous studies, we reported that the kidney-secreted survival protein renalase (RNLS) and an agonist peptide protected mice from cisplatin-induced AKI. METHODS: To investigate whether kidney-targeted delivery of RNLS might prevent cisplatin-induced CKD in a mouse model, we achieved specific delivery of a RNLS agonist peptide (RP81) to the renal proximal tubule by encapsulating the peptide in mesoscale nanoparticles (MNPs). We used genetic deletion of RNLS, single-cell RNA sequencing analysis, and Western blotting to determine efficacy and to explore underlying mechanisms. We also measured plasma RNLS in patients with advanced head and neck squamous cell carcinoma receiving their first dose of cisplatin chemotherapy. RESULTS: In mice with CKD induced by cisplatin, we observed an approximate 60% reduction of kidney RNLS; genetic deletion of RNLS was associated with significantly more severe cisplatin-induced CKD. In this severe model of cisplatin-induced CKD, systemic administration of MNP-encapsulated RP81 (RP81-MNP) significantly reduced CKD as assessed by plasma creatinine and histology. It also decreased inflammatory cytokines in plasma and inhibited regulated necrosis in kidney. Single-cell RNA sequencing analyses revealed that RP81-MNP preserved epithelial components of the nephron and the vasculature and suppressed inflammatory macrophages and myofibroblasts. In patients receiving their first dose of cisplatin chemotherapy, plasma RNLS levels trended lower at day 14 post-treatment. CONCLUSIONS: Kidney-targeted delivery of RNLS agonist RP81-MNP protects against cisplatin-induced CKD by decreasing cell death and improving the viability of the renal proximal tubule. These findings suggest that such an approach might mitigate the development of CKD in patients receiving cisplatin cancer chemotherapy.


Subject(s)
Cisplatin/adverse effects , Monoamine Oxidase/metabolism , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/prevention & control , Amino Acid Sequence , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Cell Line , Cisplatin/administration & dosage , Creatinine/blood , Disease Models, Animal , Gene Expression/drug effects , Glomerular Filtration Rate , Hepatitis A Virus Cellular Receptor 1/blood , Humans , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Monoamine Oxidase/deficiency , Monoamine Oxidase/genetics , Nanocapsules/administration & dosage , Peptides/administration & dosage , Peptides/genetics , Renal Insufficiency, Chronic/pathology
SELECTION OF CITATIONS
SEARCH DETAIL