Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Metabolites ; 13(10)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37887396

ABSTRACT

The Omega-3 Index (O3I) reflects eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content in erythrocytes. While the O3I is associated with numerous health outcomes, its widespread use is limited. We investigated whether urinary metabolites could be used to non-invasively monitor the O3I in an exploratory analysis of a previous placebo-controlled, parallel arm randomized clinical trial in males and females (n = 88) who consumed either ~3 g/d olive oil (OO; control), EPA, or DHA for 12 weeks. Fasted blood and first-void urine samples were collected at baseline and following supplementation, and they were analyzed via gas chromatography and multisegment injection-capillary electrophoresis-mass spectrometry (MSI-CE-MS), respectively. We tentatively identified S-carboxypropylcysteamine (CPCA) as a novel urinary biomarker reflecting O3I status, which increased following both EPA and DHA (p < 0.001), but not OO supplementation, and was positively correlated to the O3I (R = 0.30, p < 0.001). Additionally, an unknown dianion increased following DHA supplementation, but not EPA or OO. In ROC curve analyses, CPCA outperformed all other urinary metabolites in distinguishing both between OO and EPA or DHA supplementation groups (AUC > 80.0%), whereas the unknown dianion performed best in discriminating OO from DHA alone (AUC = 93.6%). Candidate urinary biomarkers of the O3I were identified that lay the foundation for a non-invasive assessment of omega-3 status.

2.
J Lipid Res ; 63(5): 100204, 2022 05.
Article in English | MEDLINE | ID: mdl-35337847

ABSTRACT

Vitamin D is an important fat-soluble prohormone with pleiotropic effects on human health, such as immunomodulation of the innate and adaptive immune system. There is an unmet clinical need for a rapid screening platform for 25-hydroxyvitamin D (25OH-D) determination without chromatographic separation that offers better precision and accuracy than immunoassays. Here, we introduce a high-throughput method for assessing vitamin D status from blood specimens based on direct infusion-MS/MS (DI-MS/MS) following click derivatization using 2-nitrosopyridine. We developed an optimized liquid-phase extraction protocol to minimize ion suppression when directly infusing serum or plasma extracts via a capillary electrophoresis system for quantitative determination of 25OH-D. Acceptable reproducibility (mean coefficient of variation = 10.9%, n = 412), recovery (mean = 102% at 15, 30, and 45 nmol/l), and linearity (R2 > 0.998) were achieved for 25OH-D with lower detection limits (limit of detection ∼1.2 nmol/l, S/N ∼ 3), greater throughput (∼3 min/sample), and less bias than a commercial chemiluminescence immunoassay prone to batch effects. There was mutual agreement in 25OH-D concentrations from reference blood samples measured by DI-MS/MS as compared with LC-MS/MS (mean bias = 7.8%, n = 18). We also demonstrate that this method could reduce immunoassay misclassification of vitamin D deficiency in a cohort of critically ill children (n = 30). In conclusion, DI-MS/MS offers a viable alternative to LC-MS/MS for assessment of vitamin D status in support of large-scale studies in nutritional epidemiology as well as clinical trials to rapidly screen individual patients who may benefit from vitamin D supplementation.


Subject(s)
Tandem Mass Spectrometry , Vitamin D , Calcifediol , Child , Chromatography, Liquid/methods , Humans , Immunoassay/methods , Reproducibility of Results , Tandem Mass Spectrometry/methods , Vitamins
3.
Talanta ; 160: 521-527, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27591646

ABSTRACT

Short-wavelength infrared radiation has been successfully applied to accelerate the acid digestion of refractory rare-earth ore samples. Determinations were achieved with microwave plasma-atomic emission spectrometry (MP-AES) and dynamic reaction cell - inductively coupled plasma-mass spectrometry (DRC-ICP-MS). The digestion method developed was able to tackle high iron-oxide and silicate matrices using only phosphoric acid in a time frame of only 8min, and did not require perchloric or hydrofluoric acid. Additionally, excellent recoveries and reproducibilities of the rare earth elements, as well as uranium and thorium, were achieved. Digestions of the certified reference materials OREAS-465 and REE-1, with radically different mineralogies, delivered results that mirror those obtained by fusion processes. For the rare-earth CRM OKA-2, whose REE data are provisional, experimental data for the rare-earth elements were generally higher than the provisional values, often exceeding z-values of +2. Determined values for Th and U in this reference material, for which certified values are available, were in excellent agreement.

SELECTION OF CITATIONS
SEARCH DETAIL
...