Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Bioorg Med Chem Lett ; 104: 129712, 2024 May 15.
Article En | MEDLINE | ID: mdl-38521177

We developed a model small-molecule drug conjugate (SMDC) that employed doxorubicin as a representative chemotherapeutic targeted to the cell membrane biomarker PSMA (prostate-specific membrane antigen) expressed on prostate cancer cells. The strategy capitalized on the clatherin-mediated internalization of PSMA to facilitate the selective uptake and release of doxorubicin in the target cells. The SMDC was prepared and assessed for binding kinetics, plasma stability, cell toxicity, and specificity towards PSMA expressing prostate cancer cell lines. We observed high affinity of the SMDC for PSMA (IC50 5 nM) with irreversible binding, as well as specific effectiveness against PSMA(+) cells. These findings validated the strategy for a small molecule-based approach in targeted cancer therapy.


Antigens, Surface , Doxorubicin , Glutamate Carboxypeptidase II , Prostatic Neoplasms , Humans , Male , Antigens, Surface/metabolism , Cell Line, Tumor , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Delivery Systems , Glutamate Carboxypeptidase II/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism
2.
Bioorg Med Chem Lett ; 101: 129657, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38360419

Herein, we report the modular synthesis and evaluation of a prostate-specific membrane antigen (PSMA) targeted small molecule drug conjugate (SMDC) carrying the chemotherapeutic agent, SN38. Due to the fluorogenic properties of SN38, payload release kinetics from the platform was observed in buffers representing the pH conditions of systemic circulation and cellular internalization. It was found that this platform is stable with minimal payload release at physiological pH with most rapid payload release observed at pH values representing the endosome complex. We confirmed selective payload release and chemotherapeutic efficacy for PSMA(+) prostate cancer cells over PSMA(-) cells. These results demonstrate that chemotherapeutic agents with limited solubility can be conjugated to a water-soluble targeting and linker platform without attenuating efficacy.


Glutamate Carboxypeptidase II , Prostatic Neoplasms , Male , Humans , Cell Line, Tumor , Glutamate Carboxypeptidase II/chemistry , Antigens, Surface/chemistry , Prostatic Neoplasms/drug therapy
3.
Adv Healthc Mater ; 12(19): e2202918, 2023 07.
Article En | MEDLINE | ID: mdl-37002787

Herein, this work reports the first synthetic vaccine adjuvants that attenuate potency in response to small, 1-2 °C changes in temperature about their lower critical solution temperature (LCST). Adjuvant additives significantly increase vaccine efficacy. However, adjuvants also cause inflammatory side effects, such as pyrexia, which currently limits their use. To address this, a thermophobic vaccine adjuvant engineered to attenuate potency at temperatures correlating to pyrexia is created. Thermophobic adjuvants are synthesized by combining a rationally designed trehalose glycolipid vaccine adjuvant with thermoresponsive poly-N-isoporpylacrylamide (NIPAM) via reversible addition fragmentation chain transfer (RAFT) polymerization. The resulting thermophobic adjuvants exhibit LCSTs near 37 °C, and self-assembled into nanoparticles with temperature-dependent sizes (90-270 nm). Thermophobic adjuvants activate HEK-mMINCLE and other innate immune cell lines as well as primary mouse bone marrow derived dendritic cells (BMDCs) and bone marrow derived macrophages (BMDMs). Inflammatory cytokine production is attenuated under conditions mimicking pyrexia (above the LCST) relative to homeostasis (37 °C) or below the LCST. This thermophobic behavior correlated with decreased adjuvant Rg is observed by DLS, as well as glycolipid-NIPAM shielding interactions are observed by NOESY-NMR. In vivo, thermophobic adjuvants enhance efficacy of a whole inactivated influenza A/California/04/2009 virus vaccine, by increasing neutralizing antibody titers and CD4+ /44+ /62L+ lung and lymph node central memory T cells, as well as providing better protection from morbidity after viral challenge relative to unadjuvanted control vaccine. Together, these results demonstrate the first adjuvants with potency regulated by temperature. This work envisions that with further investigation, this approach can enhance vaccine efficacy while maintaining safety.


Adjuvants, Vaccine , Vaccines , Animals , Mice , Trehalose/pharmacology , Trehalose/chemistry , Lectins, C-Type/metabolism , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/chemistry , Glycolipids/pharmacology , Glycolipids/chemistry , Antibodies, Viral
4.
Acta Pharmacol Sin ; 41(7): 995-1004, 2020 Jul.
Article En | MEDLINE | ID: mdl-32451412

We have recently developed an enzyme-directed immunostimulant (EDI) prodrug motif, which is metabolized to active immunostimulant by cancer cells and, following drug efflux, activates nearby immune cells, resulting in immunogenicity. In this study, we synthesized several EDI prodrugs featuring an imidazoquinoline immunostimulant resiquimod (a Toll-like receptor 7/8 agonist) covalently modified with glycosidase enzyme-directing groups selected from substrates of ß-glucuronidase, α-mannosidase, or ß-galactosidase. We compared the glycosidase-dependent immunogenicity elicited by each EDI in RAW-Blue macrophages following conversion to active immunostimulant by complementary glycosidase. At a cellular level, we examined EDI metabolism across three cancer cell lines (B16 melanoma, TC2 prostate, and 4T1 breast cancer). Comparing the relative immunogenicity elicited by each EDI/cancer cell combination, we found that B16 cells produced the highest EDI prodrug immunogenicity, achieving >95% of that elicited by unmodified resiquimod, followed by TC2 and 4T1 cells (40% and 30%, respectively). Immunogenicity elicited was comparable for a given cell type and independent of the glycosidase substrate in the EDIs or differences in functional glycosidase activity between cell lines. Measuring drug efflux of the immunostimulant payload and efflux protein expression revealed that EDI/cancer cell-mediated immunogenicity was governed by efflux potential of the cancer cells. We determined that, following EDI conversion, immunostimulant efflux occurred through both P-glycoprotein-dependent and P-glycoprotein-independent transport mechanisms. Overall, this study highlights the broad ability of EDIs to couple immunogenicity to the metabolism of many cancers that exhibit drug efflux and suggests that designing future generations of EDIs with immunostimulant payloads that are optimized for drug efflux could be particularly beneficial.


Adjuvants, Immunologic/metabolism , Glycoside Hydrolases/metabolism , Imidazoles/metabolism , Neoplasms/metabolism , Prodrugs/metabolism , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/pharmacology , Animals , Cells, Cultured , Imidazoles/chemistry , Imidazoles/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Mice , Neoplasms/drug therapy , Neoplasms/pathology , Prodrugs/chemistry , Prodrugs/pharmacology
...