Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Toxins (Basel) ; 11(7)2019 07 19.
Article in English | MEDLINE | ID: mdl-31331004

ABSTRACT

The genus Bitis comprises 17 snake species that inhabit Africa and the Arabian Peninsula. They are responsible for a significant proportion of snakebites in the region. The venoms of the two independent lineages of giant Bitis (B. arietans and again in the common ancestor of the clade consisting of B. gabonica, B. nasicornis, B. parviocula and B. rhinoceros) induce an array of debilitating effects including anticoagulation, hemorrhagic shock and cytotoxicity, whilst the dwarf species B. atropos is known to have strong neurotoxic effects. However, the venom effects of the other species within the genus have not been explored in detail. A series of coagulation assays were implemented to assess the coagulotoxic venom effects of fourteen species within the genus. This study identified procoagulant venom as the ancestral condition, retained only by the basal dwarf species B. worthingtoni, suggesting anticoagulant venom is a derived trait within the Bitis genus and has been secondarily amplified on at least four occasions. A wide range of anticoagulant mechanisms were identified, such as coagulant and destructive activities upon fibrinogen in both giant and dwarf Bitis and the action of inhibiting the prothrombinase complex, which is present in a clade of dwarf Bitis. Antivenom studies revealed that while the procoagulant effects of B. worthingtoni were poorly neutralized, and thus a cause for concern, the differential mechanisms of anticoagulation in other species were all well neutralized. Thus, this study concludes there is a wide range of coagulotoxic mechanisms which have evolved within the Bitis genus and that clinical management strategies are limited for the procoagulant effects of B. worthingtoni, but that anticoagulant effects of other species are readily treated by the South African polyvalent antivenom. These results therefore have direct, real-work implications for the treatment of envenomed patients.


Subject(s)
Anticoagulants/toxicity , Antivenins/pharmacology , Blood Coagulation/drug effects , Coagulants/toxicity , Viper Venoms/toxicity , Viperidae , Animals , Fibrinogen/metabolism , Humans , Thrombelastography , Thromboplastin/antagonists & inhibitors
2.
Toxins (Basel) ; 9(8)2017 08 06.
Article in English | MEDLINE | ID: mdl-28783084

ABSTRACT

While snake venoms have been the subject of intense study, comparatively little work has been done on lizard venoms. In this study, we have examined the structural and functional diversification of anguimorph lizard venoms and associated toxins, and related these results to dentition and predatory ecology. Venom composition was shown to be highly variable across the 20 species of Heloderma, Lanthanotus, and Varanus included in our study. While kallikrein enzymes were ubiquitous, they were also a particularly multifunctional toxin type, with differential activities on enzyme substrates and also ability to degrade alpha or beta chains of fibrinogen that reflects structural variability. Examination of other toxin types also revealed similar variability in their presence and activity levels. The high level of venom chemistry variation in varanid lizards compared to that of helodermatid lizards suggests that venom may be subject to different selection pressures in these two families. These results not only contribute to our understanding of venom evolution but also reveal anguimorph lizard venoms to be rich sources of novel bioactive molecules with potential as drug design and development lead compounds.


Subject(s)
Lizards , Venoms , Animals , Evolution, Molecular , Ileum/drug effects , Ileum/physiology , In Vitro Techniques , Kallikreins/chemistry , Male , Microscopy, Electron, Scanning , Muscle Contraction/drug effects , Phospholipases A2/chemistry , Phylogeny , Proteomics , Rats , Tooth/ultrastructure , Venoms/chemistry , Venoms/genetics , Venoms/toxicity
3.
Neurotox Res ; 32(3): 487-495, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28674788

ABSTRACT

Coral snake envenomations are well characterized to be lethally neurotoxic. Despite this, few multispecies, neurotoxicity and antivenom efficacy comparisons have been undertaken and only for the Micrurus genus; Micruroides has remained entirely uninvestigated. As the USA's supplier of antivenom has currently stopped production, alternative sources need to be explored. The Mexican manufacturer Bioclon uses species genetically related to USA species, thus we investigated the efficacy against Micrurus fulvius (eastern coral snake), the main species responsible for lethal envenomations in the USA as well as additional species from the Americas. The use of Coralmyn® coral snake antivenom was effective in neutralizing the neurotoxic effects exhibited by the venom of M. fulvius but was ineffective against the venoms of Micrurus tener, Micrurus spixii, Micrurus pyrrhocryptus, and Micruroides euryxanthus. Our results suggest that the Mexican antivenom may be clinically useful for the treatment of M. fulvius in the USA but may be of only limited efficacy against the other species studied.


Subject(s)
Antivenins/pharmacology , Elapid Venoms/toxicity , Animals , Chickens , Coral Snakes , Male , Mice , Neurotoxins/toxicity , Phylogeny , Species Specificity
4.
Article in English | MEDLINE | ID: mdl-28457945

ABSTRACT

Venom is a key evolutionary trait, as evidenced by its widespread convergent evolution across the animal kingdom. In an escalating prey-predator arms race, venoms evolve rapidly to guarantee predatory or defensive success. Variation in venom composition is ubiquitous among snakes. Here, we tested variation in venom activity on substrates relevant to blood coagulation among Pseudonaja (brown snake) species, Australian elapids responsible for the majority of medically important human envenomations in Australia. A functional approach was employed to elucidate interspecific variation in venom activity in all nine currently recognised species of Pseudonaja. Fluorometric enzymatic activity assays were performed to test variation in whole venom procoagulant activity among species. Analyses confirmed the previously documented ontogenetic shift from non-coagulopathic venom in juveniles to coagulopathic venom as adults, except for the case of P. modesta, which retains non-coagulopathic venom as an adult. These shifts in venom activity correlate with documented ontogenetic shifts in diet among brown snakes from specialisation on reptilian prey as juveniles (and throughout the life cycle of P. modesta), to a more generalised diet in adults that includes mammals. The results of this study bring to light findings relevant to both clinical and evolutionary toxinology.


Subject(s)
Animal Nutritional Physiological Phenomena , Coagulants/pharmacology , Elapid Venoms/pharmacology , Elapidae/physiology , Phylogeny , Animals , Australia , Factor VII/metabolism , Factor Xa/metabolism , Humans , Least-Squares Analysis , Predatory Behavior , Prothrombin/metabolism , Species Specificity
5.
Toxins (Basel) ; 9(3)2017 03 13.
Article in English | MEDLINE | ID: mdl-28335411

ABSTRACT

The cytotoxicity of the venom of 25 species of Old World elapid snake was tested and compared with the morphological and behavioural adaptations of hooding and spitting. We determined that, contrary to previous assumptions, the venoms of spitting species are not consistently more cytotoxic than those of closely related non-spitting species. While this correlation between spitting and non-spitting was found among African cobras, it was not present among Asian cobras. On the other hand, a consistent positive correlation was observed between cytotoxicity and utilisation of the defensive hooding display that cobras are famous for. Hooding and spitting are widely regarded as defensive adaptations, but it has hitherto been uncertain whether cytotoxicity serves a defensive purpose or is somehow useful in prey subjugation. The results of this study suggest that cytotoxicity evolved primarily as a defensive innovation and that it has co-evolved twice alongside hooding behavior: once in the Hemachatus + Naja and again independently in the king cobras (Ophiophagus). There was a significant increase of cytotoxicity in the Asian Naja linked to the evolution of bold aposematic hood markings, reinforcing the link between hooding and the evolution of defensive cytotoxic venoms. In parallel, lineages with increased cytotoxicity but lacking bold hood patterns evolved aposematic markers in the form of high contrast body banding. The results also indicate that, secondary to the evolution of venom rich in cytotoxins, spitting has evolved three times independently: once within the African Naja, once within the Asian Naja, and once in the Hemachatus genus. The evolution of cytotoxic venom thus appears to facilitate the evolution of defensive spitting behaviour. In contrast, a secondary loss of cytotoxicity and reduction of the hood occurred in the water cobra Naja annulata, which possesses streamlined neurotoxic venom similar to that of other aquatic elapid snakes (e.g., hydrophiine sea snakes). The results of this study make an important contribution to our growing understanding of the selection pressures shaping the evolution of snake venom and its constituent toxins. The data also aid in elucidating the relationship between these selection pressures and the medical impact of human snakebite in the developing world, as cytotoxic cobras cause considerable morbidity including loss-of-function injuries that result in economic and social burdens in the tropics of Asia and sub-Saharan Africa.


Subject(s)
Elapid Venoms , Neurotoxins , Animals , Behavior, Animal , Biological Evolution , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Chickens , Elapid Venoms/toxicity , Elapidae/physiology , Humans , Muscle, Skeletal/innervation , Neuromuscular Junction/drug effects , Neurotoxins/toxicity , Pigmentation
6.
Toxins (Basel) ; 8(11)2016 10 26.
Article in English | MEDLINE | ID: mdl-27792190

ABSTRACT

Australia is the stronghold of the front-fanged venomous snake family Elapidae. The Australasian elapid snake radiation, which includes approximately 100 terrestrial species in Australia, as well as Melanesian species and all the world's sea snakes, is less than 12 million years old. The incredible phenotypic and ecological diversity of the clade is matched by considerable diversity in venom composition. The clade's evolutionary youth and dynamic evolution should make it of particular interest to toxinologists, however, the majority of species, which are small, typically inoffensive, and seldom encountered by non-herpetologists, have been almost completely neglected by researchers. The present study investigates the venom composition of 28 species proteomically, revealing several interesting trends in venom composition, and reports, for the first time in elapid snakes, the existence of an ontogenetic shift in the venom composition and activity of brown snakes (Pseudonaja sp.). Trends in venom composition are compared to the snakes' feeding ecology and the paper concludes with an extended discussion of the selection pressures shaping the evolution of snake venom.


Subject(s)
Elapid Venoms , Animals , Australia , Blood Coagulation/drug effects , Elapid Venoms/chemistry , Elapid Venoms/genetics , Elapid Venoms/toxicity , Elapidae/genetics , Elapidae/physiology , Evolution, Molecular , Female , Humans , Male , Predatory Behavior
7.
Toxins (Basel) ; 8(10)2016 10 18.
Article in English | MEDLINE | ID: mdl-27763551

ABSTRACT

Millions of years of evolution have fine-tuned the ability of venom peptides to rapidly incapacitate both prey and potential predators. Toxicofera reptiles are characterized by serous-secreting mandibular or maxillary glands with heightened levels of protein expression. These glands are the core anatomical components of the toxicoferan venom system, which exists in myriad points along an evolutionary continuum. Neofunctionalisation of toxins is facilitated by positive selection at functional hotspots on the ancestral protein and venom proteins have undergone dynamic diversification in helodermatid and varanid lizards as well as advanced snakes. A spectacular point on the venom system continuum is the long-glanded blue coral snake (Calliophis bivirgatus), a specialist feeder that preys on fast moving, venomous snakes which have both a high likelihood of prey escape but also represent significant danger to the predator itself. The maxillary venom glands of C. bivirgatus extend one quarter of the snake's body length and nestle within the rib cavity. Despite the snake's notoriety its venom has remained largely unstudied. Here we show that the venom uniquely produces spastic paralysis, in contrast to the flaccid paralysis typically produced by neurotoxic snake venoms. The toxin responsible, which we have called calliotoxin (δ-elapitoxin-Cb1a), is a three-finger toxin (3FTx). Calliotoxin shifts the voltage-dependence of NaV1.4 activation to more hyperpolarised potentials, inhibits inactivation, and produces large ramp currents, consistent with its profound effects on contractile force in an isolated skeletal muscle preparation. Voltage-gated sodium channels (NaV) are a particularly attractive pharmacological target as they are involved in almost all physiological processes including action potential generation and conduction. Accordingly, venom peptides that interfere with NaV function provide a key defensive and predatory advantage to a range of invertebrate venomous species including cone snails, scorpions, spiders, and anemones. Enhanced activation or delayed inactivation of sodium channels by toxins is associated with the extremely rapid onset of tetanic/excitatory paralysis in envenomed prey animals. A strong selection pressure exists for the evolution of such toxins where there is a high chance of prey escape. However, despite their prevalence in other venomous species, toxins causing delay of sodium channel inhibition have never previously been described in vertebrate venoms. Here we show that NaV modulators, convergent with those of invertebrates, have evolved in the venom of the long-glanded coral snake. Calliotoxin represents a functionally novel class of 3FTx and a structurally novel class of NaV toxins that will provide significant insights into the pharmacology and physiology of NaV. The toxin represents a remarkable case of functional convergence between invertebrate and vertebrate venom systems in response to similar selection pressures. These results underscore the dynamic evolution of the Toxicofera reptile system and reinforces the value of using evolution as a roadmap for biodiscovery.


Subject(s)
Elapid Venoms/pharmacology , Elapidae , NAV1.4 Voltage-Gated Sodium Channel/physiology , Neurotoxins/pharmacology , Voltage-Gated Sodium Channel Agonists/pharmacology , Animals , Cell Line, Tumor , Chickens , Elapid Venoms/toxicity , HEK293 Cells , Humans , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/innervation , Muscle, Skeletal/physiology , Neurotoxins/toxicity , Voltage-Gated Sodium Channel Agonists/toxicity
8.
J Proteomics ; 116: 106-13, 2015 Feb 26.
Article in English | MEDLINE | ID: mdl-25241240

ABSTRACT

Venoms of the viperid sister genera Eristicophis and Pseudocerastes are poorly studied despite their anecdotal reputation for producing severe or even lethal envenomations. This is due in part to the remote and politically unstable regions that they occupy. All species contained are sit and wait ambush feeders. Thus, this study examined their venoms through proteomics techniques in order to establish if this feeding ecology, and putatively low levels of gene flow, have resulted in significant variations in venom profile. The techniques indeed revealed extreme venom variation. This has immediate implications as only one antivenom is made (using the venom of Pseudocerastes persicus) yet the proteomic variation suggests that it would be of only limited use for the other species, even the sister species Pseudocerastes fieldi. The high degree of variation however also points toward these species being rich resources for novel compounds which may have use as lead molecules in drug design and development. BIOLOGICAL SIGNIFICANCE: These results show extreme venom variation between these closely related snakes. These results have direct implications for the treatment of the envenomed patient.


Subject(s)
Proteome/metabolism , Viper Venoms/metabolism , Viperidae/metabolism , Animals , Species Specificity
9.
Toxins (Basel) ; 6(12): 3582-95, 2014 Dec 22.
Article in English | MEDLINE | ID: mdl-25533521

ABSTRACT

Research into snake venoms has revealed extensive variation at all taxonomic levels. Lizard venoms, however, have received scant research attention in general, and no studies of intraclade variation in lizard venom composition have been attempted to date. Despite their iconic status and proven usefulness in drug design and discovery, highly venomous helodermatid lizards (gila monsters and beaded lizards) have remained neglected by toxinological research. Proteomic comparisons of venoms of three helodermatid lizards in this study has unravelled an unusual similarity in venom-composition, despite the long evolutionary time (~30 million years) separating H. suspectum from the other two species included in this study (H. exasperatum and H. horridum). Moreover, several genes encoding the major helodermatid toxins appeared to be extremely well-conserved under the influence of negative selection (but with these results regarded as preliminary due to the scarcity of available sequences). While the feeding ecologies of all species of helodermatid lizard are broadly similar, there are significant morphological differences between species, which impact upon relative niche occupation.


Subject(s)
Lizards/classification , Venoms/chemistry , Amino Acid Sequence , Animals , Chromatography, Liquid , Electrophoresis, Gel, Two-Dimensional , Evolution, Molecular , Lizards/genetics , Molecular Sequence Data , Phylogeny , Proteomics , Sequence Alignment , Tandem Mass Spectrometry , Venoms/genetics
10.
Toxins (Basel) ; 5(12): 2621-55, 2013 Dec 18.
Article in English | MEDLINE | ID: mdl-24351719

ABSTRACT

Despite the unparalleled diversity of venomous snakes in Australia, research has concentrated on a handful of medically significant species and even of these very few toxins have been fully sequenced. In this study, venom gland transcriptomes were sequenced from eleven species of small Australian elapid snakes, from eleven genera, spanning a broad phylogenetic range. The particularly large number of sequences obtained for three-finger toxin (3FTx) peptides allowed for robust reconstructions of their dynamic molecular evolutionary histories. We demonstrated that each species preferentially favoured different types of α-neurotoxic 3FTx, probably as a result of differing feeding ecologies. The three forms of α-neurotoxin [Type I (also known as (aka): short-chain), Type II (aka: long-chain) and Type III] not only adopted differential rates of evolution, but have also conserved a diversity of residues, presumably to potentiate prey-specific toxicity. Despite these differences, the different α-neurotoxin types were shown to accumulate mutations in similar regions of the protein, largely in the loops and structurally unimportant regions, highlighting the significant role of focal mutagenesis. We theorize that this phenomenon not only affects toxin potency or specificity, but also generates necessary variation for preventing/delaying prey animals from acquiring venom-resistance. This study also recovered the first full-length sequences for multimeric phospholipase A2 (PLA2) 'taipoxin/paradoxin' subunits from non-Oxyuranus species, confirming the early recruitment of this extremely potent neurotoxin complex to the venom arsenal of Australian elapid snakes. We also recovered the first natriuretic peptides from an elapid that lack the derived C-terminal tail and resemble the plesiotypic form (ancestral character state) found in viper venoms. This provides supporting evidence for a single early recruitment of natriuretic peptides into snake venoms. Novel forms of kunitz and waprin peptides were recovered, including dual domain kunitz-kunitz precursors and the first kunitz-waprin hybrid precursors from elapid snakes. The novel sequences recovered in this study reveal that the huge diversity of unstudied venomous Australian snakes are of considerable interest not only for the investigation of venom and whole organism evolution but also represent an untapped bioresource in the search for novel compounds for use in drug design and development.


Subject(s)
Elapid Venoms/genetics , Elapidae/genetics , Amino Acid Sequence , Animals , Australia , Evolution, Molecular , Molecular Sequence Data , Natriuretic Peptides/genetics , Neurotoxins/genetics , Phylogeny , Sequence Alignment , Transcriptome
11.
J Proteomics ; 91: 338-43, 2013 Oct 08.
Article in English | MEDLINE | ID: mdl-23911961

ABSTRACT

Treatment of Hypnale hypnale bites with commercial antivenoms, even those raised against its sister taxon Calloselasma rhodostoma, has never been clinically successful. As these two genera have been separated for 20million years, we tested to see whether significant variations in venom had accumulated during this long period of evolutionary divergence, and thus could be responsible for the failure of antivenom. Proteomic analyses of C. rhodostoma and H. hypnale venom were performed using 1D and 2D PAGE as well as 2D-DIGE. C. rhodostoma venom was diverse containing large amounts of Disintegrin, Kallikrein, l-amino acid oxidase, Lectin, phospholipase A2 (acidic, basic and neutral) and Snake Venom Metalloprotease. In contrast, while H. hypnale also contained a wide range of toxin types, the venom was overwhelmingly dominated by two molecular weight forms of basic PLA2. 2D-DIGE (2-D Fluorescence Difference Gel Electrophoresis analysis) showed that even when a particular toxin class was shared between the two venoms, there were significant molecular weights or isoelectric point differences. This proteomic difference explains the past treatment failures with C. rhodostoma antivenom and highlights the need for a H. hypnale specific antivenom. BIOLOGICAL SIGNIFICANCE: These results have direct implications for the treatment of envenomed patients in Sri Lanka. The unusual venom profile of Hypnale hypnale underscores the biodiscovery potential of novel snake venoms.


Subject(s)
Gene Expression Regulation , Proteome/metabolism , Viper Venoms/metabolism , Viperidae/metabolism , Animals , Antivenins/chemistry , Evolution, Molecular , Proteomics , Species Specificity
12.
Mol Cell Proteomics ; 12(7): 1881-99, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23547263

ABSTRACT

Although it has been established that all toxicoferan squamates share a common venomous ancestor, it has remained unclear whether the maxillary and mandibular venom glands are evolving on separate gene expression trajectories or if they remain under shared genetic control. We show that identical transcripts are simultaneously expressed not only in the mandibular and maxillary glands, but also in the enigmatic snake rictal gland. Toxin molecular frameworks recovered in this study were three-finger toxin (3FTx), CRiSP, crotamine (beta-defensin), cobra venom factor, cystatin, epididymal secretory protein, kunitz, L-amino acid oxidase, lectin, renin aspartate protease, veficolin, and vespryn. We also discovered a novel low-molecular weight disulfide bridged peptide class in pythonid snake glands. In the iguanian lizards, the most highly expressed are potentially antimicrobial in nature (crotamine (beta-defensin) and cystatin), with crotamine (beta-defensin) also the most diverse. However, a number of proteins characterized from anguimorph lizards and caenophidian snakes with hemotoxic or neurotoxic activities were recruited in the common toxicoferan ancestor and remain expressed, albeit in low levels, even in the iguanian lizards. In contrast, the henophidian snakes express 3FTx and lectin toxins as the dominant transcripts. Even in the constricting pythonid and boid snakes, where the glands are predominantly mucous-secreting, low-levels of toxin transcripts can be detected. Venom thus appears to play little role in feeding behavior of most iguanian lizards or the powerful constricting snakes, and the low levels of expression argue against a defensive role. However, clearly the incipient or secondarily atrophied venom systems of these taxa may be a source of novel compounds useful in drug design and discovery.


Subject(s)
Lizards/genetics , Snakes/genetics , Venoms/genetics , Amino Acid Sequence , Animals , Molecular Sequence Data , Phylogeny , Sequence Alignment , Transcriptome , Venoms/chemistry
13.
Mol Cell Proteomics ; 12(3): 651-63, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23242553

ABSTRACT

Snake venom metalloproteases (SVMP) are composed of five domains: signal peptide, propeptide, metalloprotease, disintegrin, and cysteine-rich. Secreted toxins are typically combinatorial variations of the latter three domains. The SVMP-encoding genes of Psammophis mossambicus venom are unique in containing only the signal and propeptide domains. We show that the Psammophis SVMP propeptide evolves rapidly and is subject to a high degree of positive selection. Unlike Psammophis, some species of Echis express both the typical multidomain and the unusual monodomain (propeptide only) SVMP, with the result that a lower level of variation is exerted upon the latter. We showed that most mutations in the multidomain Echis SVMP occurred in the protease domain responsible for proteolytic and hemorrhagic activities. The cysteine-rich and disintegrin-like domains, which are putatively responsible for making the P-III SVMPs more potent than the P-I and P-II forms, accumulate the remaining variation. Thus, the binding sites on the molecule's surface are evolving rapidly whereas the core remains relatively conserved. Bioassays conducted on two post-translationally cleaved novel proline-rich peptides from the P. mossambicus propeptide domain showed them to have been neofunctionalized for specific inhibition of mammalian a7 neuronal nicotinic acetylcholine receptors. We show that the proline rich postsynaptic specific neurotoxic peptides from Azemiops feae are the result of convergent evolution within the precursor region of the C-type natriuretic peptide instead of the SVMP. The results of this study reinforce the value of studying obscure venoms for biodiscovery of novel investigational ligands.


Subject(s)
Evolution, Molecular , Metalloproteases/genetics , Protein Precursors/genetics , Snake Venoms/genetics , Amino Acid Sequence , Animals , Binding Sites/genetics , Cell Line, Tumor , Dose-Response Relationship, Drug , Humans , Metalloproteases/classification , Metalloproteases/metabolism , Models, Molecular , Molecular Sequence Data , Mutation , Nicotinic Antagonists/pharmacology , Peptides/pharmacology , Phylogeny , Protein Precursors/chemistry , Protein Precursors/metabolism , Protein Structure, Tertiary , Receptors, Nicotinic/metabolism , Selection, Genetic , Sequence Homology, Amino Acid , Snake Venoms/classification , Snake Venoms/enzymology , Species Specificity , alpha7 Nicotinic Acetylcholine Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...