Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Nature ; 632(8024): 320-326, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39112620

ABSTRACT

Mass coral bleaching on the Great Barrier Reef (GBR) in Australia between 2016 and 2024 was driven by high sea surface temperatures (SST)1. The likelihood of temperature-induced bleaching is a key determinant for the future threat status of the GBR2, but the long-term context of recent temperatures in the region is unclear. Here we show that the January-March Coral Sea heat extremes in 2024, 2017 and 2020 (in order of descending mean SST anomalies) were the warmest in 400 years, exceeding the 95th-percentile uncertainty limit of our reconstructed pre-1900 maximum. The 2016, 2004 and 2022 events were the next warmest, exceeding the 90th-percentile limit. Climate model analysis confirms that human influence on the climate system is responsible for the rapid warming in recent decades. This attribution, together with the recent ocean temperature extremes, post-1900 warming trend and observed mass coral bleaching, shows that the existential threat to the GBR ecosystem from anthropogenic climate change is now realized. Without urgent intervention, the iconic GBR is at risk of experiencing temperatures conducive to near-annual coral bleaching3, with negative consequences for biodiversity and ecosystems services. A continuation on the current trajectory would further threaten the ecological function4 and outstanding universal value5 of one of Earth's greatest natural wonders.


Subject(s)
Anthozoa , Anthropogenic Effects , Coral Reefs , Global Warming , Hot Temperature , Oceans and Seas , Animals , Anthozoa/physiology , Australia , Climate Models , Extinction, Biological , Global Warming/history , Global Warming/prevention & control , Global Warming/statistics & numerical data , History, 17th Century , History, 18th Century , History, 19th Century , History, 20th Century , History, 21st Century , Human Activities/history , Pacific Ocean , Seawater/analysis
2.
J Environ Manage ; 321: 115917, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35988400

ABSTRACT

In this paper, we argue that current definitions of drought, especially in the context of small-scale agricultural production, are incomplete. We introduce the concept of 'technological drought' to account for crop failures, reduced yields or water scarcity, which are the consequence of an inability to supplement water when there is a lack of irrigation technology and/or existing poor water management. We illustrate the diversity of causes of technological drought, which can include shortages of fuel or electricity to operate pumps, problematically high costs to access irrigation infrastructure, or constrained access to pumps that have to be shared among multiple farmers. We argue that vulnerability to technological drought can be strongly conditioned by socio-economic conditions and that its impact can be magnified when population growth and the demand for food mean that any decline in yield can have serious consequences for food security. We show that technological drought is a complex phenomenon, and can be differentiated from the more widely-recognised classes of drought (meteorological, agricultural, hydrological, and socio-economic) in multiple ways. In particular, technological drought exhibits an important dependence on the socio-economic context of agricultural production. It is perhaps most evident in developing economies, especially where agricultural output depends strongly on the capacity of individual farmers to manage crop water supply on small holdings. Technological drought can follow from even brief interruptions to monsoon rainfall during critical stages of crop growth, such that technological droughts can be distinguished from other forms of drought by their brevity.


Subject(s)
Droughts , Water Insecurity , Agriculture , Technology , Water , Water Supply
3.
Science ; 374(6563): eaay9165, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34591645

ABSTRACT

Climate variability in the tropical Pacific affects global climate on a wide range of time scales. On interannual time scales, the tropical Pacific is home to the El Niño­Southern Oscillation (ENSO). Decadal variations and changes in the tropical Pacific, referred to here collectively as tropical Pacific decadal variability (TPDV), also profoundly affect the climate system. Here, we use TPDV to refer to any form of decadal climate variability or change that occurs in the atmosphere, the ocean, and over land within the tropical Pacific. "Decadal," which we use in a broad sense to encompass multiyear through multidecadal time scales, includes variability about the mean state on decadal time scales, externally forced mean-state changes that unfold on decadal time scales, and decadal variations in the behavior of higher-frequency modes like ENSO.

4.
Neuropharmacology ; 195: 108569, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33915142

ABSTRACT

Epilepsy is caused when rhythmic neuronal network activity escapes normal control mechanisms, resulting in seizures. There is an extensive and growing body of evidence that the onset and maintenance of epilepsy involves alterations in the trafficking, synaptic surface expression and signalling of kainate and AMPA receptors (KARs and AMPARs). The KAR subunit GluK2 and AMPAR subunit GluA2 are key determinants of the properties of their respective assembled receptors. Both subunits are subject to extensive protein interactions, RNA editing and post-translational modifications. In this review we focus on the cell biology of GluK2-containing KARs and GluA2-containing AMPARs and outline how their regulation and dysregulation is implicated in, and affected by, seizure activity. Further, we discuss role of KARs in regulating AMPAR surface expression and plasticity, and the relevance of this to epilepsy. This article is part of the special issue on 'Glutamate Receptors - Kainate receptors'.


Subject(s)
Brain/metabolism , Epilepsy/metabolism , Neurons/metabolism , Receptors, AMPA/metabolism , Receptors, Kainic Acid/metabolism , Signal Transduction/physiology , Animals , Humans , Synapses/metabolism
5.
Mol Cancer Ther ; 19(10): 2044-2056, 2020 10.
Article in English | MEDLINE | ID: mdl-32747419

ABSTRACT

Small molecule inhibitors targeting mutant EGFR are standard of care in non-small cell lung cancer (NSCLC), but acquired resistance invariably develops through mutations in EGFR or through activation of compensatory pathways such as cMet. Amivantamab (JNJ-61186372) is an anti-EGFR and anti-cMet bispecific low fucose antibody with enhanced Fc function designed to treat tumors driven by activated EGFR and/or cMet signaling. Potent in vivo antitumor efficacy is observed upon amivantamab treatment of human tumor xenograft models driven by mutant activated EGFR, and this activity is associated with receptor downregulation. Despite these robust antitumor responses in vivo, limited antiproliferative effects and EGFR/cMet receptor downregulation by amivantamab were observed in vitro Interestingly, in vitro addition of isolated human immune cells notably enhanced amivantamab-mediated EGFR and cMet downregulation, leading to antibody dose-dependent cancer cell killing. Through a comprehensive assessment of the Fc-mediated effector functions, we demonstrate that monocytes and/or macrophages, through trogocytosis, are necessary and sufficient for Fc interaction-mediated EGFR/cMet downmodulation and are required for in vivo antitumor efficacy. Collectively, our findings represent a novel Fc-dependent macrophage-mediated antitumor mechanism of amivantamab and highlight trogocytosis as an important mechanism of action to exploit in designing new antibody-based cancer therapies.


Subject(s)
Antibodies, Bispecific/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Macrophages/metabolism , Monocytes/metabolism , Antibodies, Bispecific/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Humans
6.
Nat Geosci ; 12(8): 643-649, 2019 Jun 12.
Article in English | MEDLINE | ID: mdl-31372180

ABSTRACT

Multi-decadal surface temperature changes may be forced by natural as well as anthropogenic factors, or arise unforced from the climate system. Distinguishing these factors is essential for estimating sensitivity to multiple climatic forcings and the amplitude of the unforced variability. Here we present 2,000-year-long global mean temperature reconstructions using seven different statistical methods that draw from a global collection of temperature-sensitive paleoclimate records. Our reconstructions display synchronous multi-decadal temperature fluctuations, which are coherent with one another and with fully forced CMIP5 millennial model simulations across the Common Era. The most significant attribution of pre-industrial (1300-1800 CE) variability at multi-decadal timescales is to volcanic aerosol forcing. Reconstructions and simulations qualitatively agree on the amplitude of the unforced global mean multi-decadal temperature variability, thereby increasing confidence in future projections of climate change on these timescales. The largest warming trends at timescales of 20 years and longer occur during the second half of the 20th century, highlighting the unusual character of the warming in recent decades.

7.
Neuropharmacology ; 158: 107728, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31356824

ABSTRACT

The RISE model is an effective system to study the underlying molecular and cellular mechanisms involved in the initiation and maintenance of epilepsy in vivo. Here we profiled the expression of excitatory and inhibitory neurotransmitter receptor subunits and synaptic scaffolding proteins in the hippocampus and temporal lobe and compared these changes with alterations in network activity at specific timepoints during epileptogenesis. Significant changes occurred in all of the ionotropic glutamate receptor subunits tested during epilepsy induction and progression and the profile of these changes differed between the hippocampus and temporal lobe. Notably, AMPAR subunits were dramatically decreased during the latent phase of epilepsy induction, matched by a profound decrease in the network response to kainate application in the hippocampus. Moreover, decreases in the GABAAß3 subunit are consistent with a loss of inhibitory input contributing to the perturbation of excitatory/inhibitory balance and seizure generation. These data highlight the synaptic reorganisation that mediates the relative hypoexcitability prior to the manifestation of seizures and subsequent hyperexcitability when spontaneous seizures develop. These patterns of changes give new insight into the mechanisms underpinning epilepsy and provide a platform for future investigations targeting particular receptor subunits to reduce or prevent seizures.


Subject(s)
Epilepsy/metabolism , Hippocampus/metabolism , Receptors, GABA-A/metabolism , Receptors, Glutamate/metabolism , Status Epilepticus/metabolism , Synapses/metabolism , Temporal Lobe/metabolism , Animals , Disease Models, Animal , Epilepsy/chemically induced , Muscarinic Agonists/toxicity , Pilocarpine/toxicity , Rats , Receptors, AMPA/metabolism , Receptors, Kainic Acid/metabolism , Receptors, Metabotropic Glutamate/metabolism , Status Epilepticus/chemically induced , GluK2 Kainate Receptor
8.
Mol Cancer Res ; 9(11): 1551-61, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21954435

ABSTRACT

Emerging literature suggests that metabolic pathways play an important role in the maintenance and progression of human cancers. In particular, recent studies have implicated lipid biosynthesis and desaturation as a requirement for tumor cell survival. In the studies reported here, we aimed to understand whether tumor cells require the activity of either human isoform of stearoyl-CoA-desaturase (SCD1 or SCD5) for survival. Inhibition of SCD1 by siRNA or a small molecule antagonist results in strong induction of apoptosis and growth inhibition, when tumor cells are cultured in reduced (2%) serum conditions, but has little impact on cells cultured in 10% serum. Depletion of SCD5 had minimal effects on cell growth or apoptosis. Consistent with the observed dependence on SCD1, but not SCD5, levels of SCD1 protein increased in response to decreasing serum levels. Both induction of SCD1 protein and sensitivity to growth inhibition by SCD1 inhibition could be reversed by supplementing growth media with unsaturated fatty acids, the product of the enzymatic reaction catalyzed by SCD1. Transcription profiling of cells treated with an SCD inhibitor revealed strong induction of markers of endoplasmic reticulum stress. Underscoring its importance in cancer, SCD1 protein was found to be highly expressed in a large percentage of human cancer specimens. SCD inhibition resulted in tumor growth delay in a human gastric cancer xenograft model. Altogether, these results suggest that desaturated fatty acids are required for tumor cell survival and that SCD may represent a viable target for the development of novel agents for cancer therapy.


Subject(s)
Fatty Acids, Unsaturated/metabolism , Neoplasms/metabolism , Neoplasms/therapy , Stearoyl-CoA Desaturase/antagonists & inhibitors , Amino Acid Sequence , Animals , Cell Growth Processes/physiology , Cell Line, Tumor , Cell Survival/physiology , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Sequence Data , Molecular Targeted Therapy , Neoplasms/genetics , Neoplasms/pathology , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , Stearoyl-CoA Desaturase/biosynthesis , Stearoyl-CoA Desaturase/deficiency , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Transfection
9.
Clin Cancer Res ; 17(12): 4031-41, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21531814

ABSTRACT

PURPOSE: The extensive involvement of the HER kinases in epithelial cancer suggests that kinase inhibitors targeting this receptor family have the potential for broad spectrum antitumor activity. BMS-690514 potently inhibits all three HER kinases, and the VEGF receptor kinases. This report summarizes data from biochemical and cellular pharmacology studies, as well as antitumor activity of BMS-690514. EXPERIMENTAL DESIGN: The potency and selectivity of BMS-690514 was evaluated by using an extensive array of enzymatic and binding assays, as well as cellular assays that measure proliferation and receptor signaling. Antitumor activity was evaluated by using multiple xenograft models that depend on HER kinase signaling. The antiangiogenic properties of BMS-690514 were assessed in a matrigel plug assay, and effect on tumor blood flow was measured by dynamic contrast-enhanced MRI. RESULTS: BMS-690514 is a potent and selective inhibitor of epidermal growth factor receptor (EGFR), HER2, and HER4, as well as the VEGF receptor kinases. It inhibits proliferation of tumor cells with potency that correlates with inhibition of receptor signaling, and induces apoptosis in lung tumor cells that have an activating mutation in EGFR. Antitumor activity was observed with BMS-690514 at multiple doses that are well tolerated in mice. There was evidence of suppression of tumor angiogenesis and endothelial function by BMS-690514, which may contribute to its efficacy. CONCLUSIONS: By combining inhibition of two receptor kinase families, BMS-690524 is a novel targeted agent that disrupts signaling in the tumor and its vasculature.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , ErbB Receptors/antagonists & inhibitors , Neoplasms/enzymology , Piperidines/pharmacology , Pyrroles/pharmacology , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Triazines/pharmacology , Animals , Apoptosis/drug effects , Cell Line , Cell Proliferation/drug effects , Endothelial Cells/drug effects , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasms/blood supply , Neovascularization, Pathologic/enzymology , Receptor, ErbB-2/metabolism , Regional Blood Flow/drug effects , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
10.
Bioorg Med Chem Lett ; 20(9): 2998-3002, 2010 May 01.
Article in English | MEDLINE | ID: mdl-20382527

ABSTRACT

Biarylamine-based inhibitors of Met kinase have been identified. Lead compounds demonstrate nanomolar potency in Met kinase biochemical assays and significant activity in the Met-driven GTL-16 human gastric carcinoma cell line. X-ray crystallography revealed that these compounds adopt a bioactive conformation, in the kinase domain, consistent with that previously seen with 2-pyridone-based Met kinase inhibitors. Compound 9b demonstrated potent in vivo antitumor activity in the GTL-16 human tumor xenograft model.


Subject(s)
Amines/chemistry , Aminopyridines/chemical synthesis , Antineoplastic Agents/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Aminopyridines/chemistry , Aminopyridines/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Binding Sites , Cell Line, Tumor , Crystallography, X-Ray , Drug Design , Humans , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/metabolism , Structure-Activity Relationship , Xenograft Model Antitumor Assays
11.
Mol Cancer Ther ; 9(2): 369-78, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20103604

ABSTRACT

Tumor angiogenesis is a complex and tightly regulated network mediated by various proangiogenic factors. The fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) family of growth factors, and associated tyrosine kinase receptors have a major influence in tumor growth and dissemination and may work synergistically to promote angiogenesis. Brivanib alaninate is the orally active prodrug of brivanib, a selective dual inhibitor of FGF and VEGF signaling. Here, we show that brivanib demonstrates antitumor activity in a broad range of xenograft models over multiple dose levels and that brivanib alaninate shows dose-dependent efficacy equivalent to brivanib in L2987 human tumor xenografts. Brivanib alaninate (107 mg/kg) reduced tumor cell proliferation as determined by a 76% reduction in Ki-67 staining and reduced tumor vascular density as determined by a 76% reduction in anti-CD34 endothelial cell staining. Furthermore, Matrigel plug assays in athymic mice showed that brivanib alaninate inhibited angiogenesis driven by VEGF or basic FGF alone, or combined. Dynamic contrast-enhanced magnetic resonance imaging, used to assess the effects of brivanib alaninate on tumor microcirculation, showed a marked decrease in gadopentetate dimeglumine contrast agent uptake at 107 mg/kg dose, with a reduction in area under the plasma concentration-time curve from time 0 to 60 minutes at 24 and 48 hours of 54% and 64%, respectively. These results show that brivanib alaninate is an effective antitumor agent in preclinical models across a range of doses, and that efficacy is accompanied by changes in cellular and vascular activities.


Subject(s)
Pyrroles/pharmacology , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Triazines/pharmacology , Vascular Endothelial Growth Factor Receptor-2/metabolism , Alanine/analogs & derivatives , Animals , Antigens, CD34/biosynthesis , Cell Line, Tumor , Collagen/chemistry , Dose-Response Relationship, Drug , Drug Combinations , Female , Humans , Laminin/chemistry , Mice , Mice, Inbred BALB C , Neoplasm Transplantation , Proteoglycans/chemistry , Signal Transduction , Time Factors
12.
J Med Chem ; 52(5): 1251-4, 2009 Mar 12.
Article in English | MEDLINE | ID: mdl-19260711

ABSTRACT

Substituted N-(4-(2-aminopyridin-4-yloxy)-3-fluoro-phenyl)-1-(4-fluorophenyl)-2-oxo-1,2-dihydropyridine-3-carboxamides were identified as potent and selective Met kinase inhibitors. Substitution of the pyridine 3-position gave improved enzyme potency, while substitution of the pyridone 4-position led to improved aqueous solubility and kinase selectivity. Analogue 10 demonstrated complete tumor stasis in a Met-dependent GTL-16 human gastric carcinoma xenograft model following oral administration. Because of its excellent in vivo efficacy and favorable pharmacokinetic and preclinical safety profiles, 10 has been advanced into phase I clinical trials.


Subject(s)
Aminopyridines/chemical synthesis , Antineoplastic Agents/chemical synthesis , Dihydropyridines/chemical synthesis , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Pyridones/chemical synthesis , Administration, Oral , Aminopyridines/pharmacokinetics , Aminopyridines/pharmacology , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , Dihydropyridines/pharmacokinetics , Dihydropyridines/pharmacology , Dogs , Humans , Mice , Mice, Nude , Models, Molecular , Pyridones/pharmacokinetics , Pyridones/pharmacology , Rats , Solubility , Structure-Activity Relationship , Xenograft Model Antitumor Assays
13.
J Med Chem ; 51(17): 5330-41, 2008 Sep 11.
Article in English | MEDLINE | ID: mdl-18690676

ABSTRACT

Conformationally constrained 2-pyridone analogue 2 is a potent Met kinase inhibitor with an IC50 value of 1.8 nM. Further SAR of the 2-pyridone based inhibitors of Met kinase led to potent 4-pyridone and pyridine N-oxide inhibitors such as 3 and 4. The X-ray crystallographic data of the inhibitor 2 bound to the ATP binding site of Met kinase protein provided insight into the binding modes of these inhibitors, and the SAR of this series of analogues was rationalized. Many of these analogues showed potent antiproliferative activities against the Met dependent GTL-16 gastric carcinoma cell line. Compound 2 also inhibited Flt-3 and VEGFR-2 kinases with IC50 values of 4 and 27 nM, respectively. It possesses a favorable pharmacokinetic profile in mice and demonstrates significant in vivo antitumor activity in the GTL-16 human gastric carcinoma xenograft model.


Subject(s)
Antineoplastic Agents/chemical synthesis , Phosphotransferases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Pyridones/pharmacology , Receptors, Growth Factor/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Humans , Inhibitory Concentration 50 , Male , Mice , Mice, Inbred BALB C , Microsomes, Liver/metabolism , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-met , Pyridones/chemical synthesis , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/antagonists & inhibitors
14.
Bioorg Med Chem Lett ; 18(9): 2985-9, 2008 May 01.
Article in English | MEDLINE | ID: mdl-18395443

ABSTRACT

We report herein a series of substituted N-(1H-pyrrolo[2,3-b]pyridin-5-yl)pyrrolo[2,1-f][1,2,4]triazin-4-amines as inhibitors of vascular endothelial growth factor receptor-2 tyrosine kinase. Through structure-activity relationship studies, biochemical potency, pharmacokinetics, and kinase selectivity were optimized to afford BMS-645737 (13), a compound with good preclinical in vivo activity against human tumor xenograft models.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Drug Design , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrroles/pharmacology , Triazines/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Angiogenesis Inhibitors/chemical synthesis , Animals , Cell Line , Cytochrome P-450 CYP3A Inhibitors , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Humans , Inhibitory Concentration 50 , Mice , Mice, Inbred BALB C , Pyrroles/chemical synthesis , Structure-Activity Relationship , Triazines/chemical synthesis , Xenograft Model Antitumor Assays
15.
Bioorg Med Chem Lett ; 18(4): 1354-8, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-18221875

ABSTRACT

Introduction of the 2,4-difluoro-5-(cyclopropylcarbamoyl)phenylamino group at the C-4 position of the pyrrolo[2,1-f][1,2,4] triazine scaffold led to the discovery of a novel sub-series of inhibitors of VEGFR-2 kinase activity. Subsequent SAR studies on the 1,3,5-oxadiazole ring appended to the C-6 position of this new sub-family of pyrrolotriazines resulted in the identification of low nanomolar inhibitors of VEGFR-2. Antitumor efficacy was observed with compound 37 against L2987 human lung carcinoma xenografts in athymic mice.


Subject(s)
Cyclopropanes/chemistry , Cyclopropanes/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Triazines/chemistry , Triazines/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Animals , Cell Line, Tumor , Cyclopropanes/chemical synthesis , Cytochrome P-450 Enzyme Inhibitors , Endothelial Cells/cytology , Endothelial Cells/drug effects , Humans , Lung Neoplasms/drug therapy , Mice , Mice, Nude , Oxadiazoles/chemical synthesis , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Protein Kinase Inhibitors/chemistry , Pyrroles/chemical synthesis , Pyrroles/chemistry , Pyrroles/pharmacology , Structure-Activity Relationship , Triazines/chemical synthesis , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL