Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Inorg Chem ; 43(11): 3327-8, 2004 May 31.
Article in English | MEDLINE | ID: mdl-15154790

ABSTRACT

Reaction between the cluster salts [(eta(5)-Cp')(3)M(3)S(4)][pts] (M = Mo, W; Cp' = methylcyclopentadienyl; pts = p-toluenesulfonate) and [Co(2)(CO)(8)] yielded the electroneutral clusters [(eta(5)-Cp')(3)M(3)S(4)Co(CO)]. The molecular structure of [(eta(5)-Cp')(3)W(3)S(4)Co(CO)] was determined by single-crystal X-ray diffraction methods. The unprecedented 60 electron W(3)S(4)Co cluster completes a homologous series of heterobimetallic clusters, [(eta(5)-Cp')(3)M(3)S(4)Co(CO)] (M = Cr, Mo, W), containing a cubane-like core motif.

2.
Inorg Chem ; 42(4): 974-81, 2003 Feb 24.
Article in English | MEDLINE | ID: mdl-12588128

ABSTRACT

By reaction of the geometrically incomplete cubane-like clusters [(eta(5)-Cp')(3)Mo(3)S(4))][pts] and [(eta(5)-Cp')(3)W(3)S(4)][pts] (Cp' = methylcyclopentadienyl; pts = p-toluenesulfonate) with group 10 alkene complexes, three new heterobimetallic clusters with cubane-like cluster cores were isolated: [(eta(5)-Cp')(3)W(3)S(4)M'(PPh(3))][pts] ([5][pts], M' = Pd; [6][pts], M' = Pt); [(eta(5)-Cp')(3)Mo(3)S(4)Ni(AsPh(3))][pts] ([7][pts]). The compounds [5][pts]-[7][pts] are completing the extensive series of clusters [(eta(5)-Cp')(3)M(3)S(4)M'(EPh(3))][pts] (M = Mo, W; M' = Ni, Pd, Pt; E = P, As) which allows the consequences of replacing a single type of atom on structural and NMR and UV/vis spectroscopic as well as electrochemical properties to be determined. Single-crystal X-ray structure determinations of [5][pts]-[7][pts] revealed that [5][pts] was not isomorphous to the other members of the series [(eta(5)-Cp')(3)M(3)S(4)M'(EPh(3))][pts] due to distinctly different cell parameters, which in the molecular structure of [5](+) is reflected in a slightly different orientation of the PPh(3) ligand. Electrochemical measurements on the series showed that the Mo-based clusters were more difficult to oxidize than their W-based analogues. The Pd-containing clusters underwent two-electron oxidation processes, whereas the Ni- and Pt-containing clusters underwent two separated one-electron oxidation processes.

SELECTION OF CITATIONS
SEARCH DETAIL