Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
Add more filters










Publication year range
1.
RSC Adv ; 14(29): 20856-20866, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38952940

ABSTRACT

The Z,E-photoisomerization of pyridine-based hydrazone switches is typically suppressed due to the presence of pyridine-based rotors. The crystal structures of studied compounds were investigated using theoretical methods combining DFT and QT-AIM calculations to unveil the nature and properties of the intramolecular hydrogen bonding. In this study, we introduced a new series of pyridine-based hydrazones anchored with o-halogen substituents (2-X) and investigated their photoswitching abilities using 1H NMR and UV-Vis spectroscopy. The efficiency of the photoisomerization from initial 2-X-Z to the 2-X-E isomer varied, with the highest yield observed for 2-Cl-E (55%). Our findings, supported by DFT calculations, revealed the formation of a new diastereomer, 2-X-E*, upon back-photoisomerization. We demonstrated that hydrazones from the 2-X series can be reversibly photoswitched using irradiation from the UV-Vis range, and additionally, we explored the effect of the halogen atom on their switching capabilities and also on their thermodynamics and kinetics of photoswitching, determining their molecular solar thermal energy storage potential.

2.
Dalton Trans ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916290

ABSTRACT

In the present era, the fixation of atmospheric CO2 is of significant importance and plays a crucial role in maintaining the balance of carbon and energy flow within ecosystems. Generally, CO2 fixation is carried out by autotrophic organisms; however, the scientific community has paid substantial attention to execute this process in laboratory. In this report, we synthesized two carbonato-bridged trinuclear copper(II) complexes, [Cu3(L1)3(µ3-CO3)](ClO4)3 (1) and [Cu3(L2)3(µ3-CO3)](ClO4)3 (2) via atmospheric fixation of CO2 starting with Cu(ClO4)2·6H2O and easily accessible pyridine/pyrazine-based N4 donor Schiff base ligands L1 and L2, respectively. Under very similar reaction conditions, the ligand framework embedded with the phenolate moiety (HL3) fails to do so because of the reduction of the Lewis acidity of the metal center, inhibiting the formation of a reactive hydroxide bound copper(II) species, which is required for the fixation of atmospheric CO2. X-ray crystal structures display that carbonate-oxygen atoms bridge three copper(II) centers in µ3syn-anti disposition in 1 and 2, whereas [Cu(HL3)(ClO4)] (3) is a mononuclear complex. Interestingly, we also isolated an important intermediate of atmospheric CO2 fixation and structurally characterized it as an anti-anti µ2 carbonato-bridged dinuclear copper(II) complex, [Cu2(L2)2(µ2-CO3)](ClO4)2·MeOH (2-I), providing an in-depth understanding of CO2 fixation in these systems. Variable temperature magnetic susceptibility measurement suggests ferromagnetic interactions between the metal centers in both 1 and 2, and the results have been further supported by DFT calculations. The catalytic efficiency of our synthesized complexes 1-3 was checked by means of catechol oxidase and phenoxazinone synthase-like activities. While complexes 1 and 2 showed oxidase-like activity for aerobic oxidation of o-aminophenol and 3,5-di-tert-butylcatechol, complex 3 was found to be feebly active. ESI mass spectrometry revealed that the oxidation reaction proceeds through the formation of complex-substrate intermediations and was further substantiated by DFT calculations. Moreover, active catalysts 1 and 2 were effectively utilized for the base-free oxidation of benzylic alcohols in the presence of air as a green and sustainable oxidant and catalytic amount of TEMPO in acetonitrile. Various substituted benzylic alcohols smoothly converted to their corresponding aldehydes under very mild conditions and ambient temperature. The present catalytic protocol showcases its environmental sustainability by producing minimal waste.

3.
Dalton Trans ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916931

ABSTRACT

The syntheses, structures, luminescence and magnetic properties of a new series of Ln(III) complexes of the formula [Ln(L)(H2O)2(DMF)2][Ln(L)2] (in which H2L is N,N'-ethylaminebis[1-phenyl-3-methyl-4-formylimino-2-pyrazoline-5-one]; Ln(III) - Gd (1), Tb (2), or Dy (3) ions). The crystal structures were determined by single-crystal X-ray diffraction measurements for all the above-mentioned complexes. The crystals of these compounds consist of cationic [Ln(L)(H2O)2(DMF)2]+ and anionic [Ln(L)2] moieties which form a 3D supramolecular architecture by the H-bonds and electrostatic forces. Luminescence emission in the visible range was observed for Tb(III) and Dy(III) compounds upon ligand sensitization, with moderate quantum yields of 3.2% for the Dy complex and 24.2% for the Tb analogue. Moreover the Tb(III) complex demonstrates triboluminescence activity. The dynamic magnetization studies revealed that 1 and 2 demonstrate field-induced magnetic relaxation with effective energy barriers, ΔE|kB = 24 K (for 1) and 85 K (for 2), while the Dy complex 3 exhibits slow relaxation of magnetization in zero field with an activation energy of 256 K.

4.
Dalton Trans ; 53(25): 10499-10510, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38841816

ABSTRACT

The burgeoning interest in the field of molecular magnetism is to perceive the high magnetic anisotropy in different geometries of metal complexes and hence to draw a magneto-structural correlation. Despite a handful of examples to exemplify the magnetic anisotropy in various coordination geometries of mononuclear complexes, the magnetic anisotropies for two different coordination geometries are underexplored. Employing an appropriate synthetic strategy utilizing the ligand LH2 [2,2'-{(1E,1'E)-pyridine2,6-diyl-bis(methaneylylidine)}-bis(azaneylylidine)diphenol] and cobalt halide salts in a 1 : 2 stoichiometric ratio in the presence of triethylamine allowed us to report a new family of dinuclear cobalt complexes [CoII2X2(L)(P)(Q)]·S with varying terminal halides [X = Cl, P = CH3CN, Q = H2O, S = H2O (1), X = Br, P = CH3CN, Q = H2O, S = H2O (2), X = I, P = CH3CN, and Q = CH3CN (3)]. All these complexes are characterized through single crystal X-ray crystallography, which reveals their crystallization in the monoclinic system P21/n space group with nearly identical structural features. These complexes share vital components, including Co(II) centers, a fully deprotonated ligand [L]2-, halide ions, and solvent molecules. The [L]2- ligand contains two Co(II) centers, where phenolate oxygen atoms bridge the Co(II) centers, forming a Co2O2 four-membered ring. Co1 demonstrates a distorted pentagonal-bipyramidal geometry with axial positions for solvent molecules, while Co2 displays a distorted tetrahedral geometry involving phenolate oxygen atoms and halide ions. Temperature-dependent dc magnetic susceptibility measurements were conducted on 1-3 within a range of 2 to 300 K at 1 kOe. The χmT vs. T plots exhibit similar trends, with χmT values at 300 K higher than the spin-only value, signifying a significant orbital contribution. As the temperature decreases, χmT decreases smoothly in all the complexes; however, no clear saturation at low temperatures is observed. Field-dependent magnetization measurements indicate a rapid increase below 20 kOe, with no hysteresis and a low magnetic blocking temperature. DFT and CASSCF/NEVPT2 theoretical calculations were performed to perceive the magnetic interaction and single-ion anisotropies of Co(II) ions in various ligand-field environments.

5.
Dalton Trans ; 53(6): 2501-2511, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38205580

ABSTRACT

In the last two decades, efforts have been devoted to obtaining insight into the magnetic interactions between CuII and LnIII utilizing experimental and theoretical means. Experimentally, it has been observed that the exchange coupling (J) in CuII-LnIII systems is often found to be ferromagnetic for ≥4f7 metal ions. However, exchange interactions at sub-Kelvin temperatures between CuII and the anisotropic/isotropic LnIII ions are not often explored. In this report, we have synthesized a series of heterobimetallic [CuLn(HL)(µ-piv)(piv)2] complexes (LnIII = Gd (1), Tb (2), Dy (3) and Er (4)) from a new compartmental Schiff base ligand, N,N'-bis(3-methoxy-5-methylsalicylidene)-1,3-diamino-2-propanol (H3L). X-ray crystallographic analysis reveals that all four complexes are isostructural and isomorphous. Magnetic susceptibility measurements reveal a ferromagnetic coupling between the CuII ion and its respective LnIII ion for all the complexes, as often observed. Moreover, µ-SQUID studies, at sub-Kelvin temperatures, show S-shaped hysteresis loops indicating the presence of antiferromagnetic coupling in complexes 1-3. The antiferromagnetic interaction is explained by considering the shortest Cu⋯Cu distance in the crystal structure. The nearly closed loops for 1-3 highlight their fast relaxation characteristics, while the opened loops for 4 might arise from intermolecular ordering. CASSCF calculations allow the quantitative assessment of the interactions, which are further supported by BS-DFT calculations.

6.
Dalton Trans ; 53(4): 1449-1459, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-37909312

ABSTRACT

Discrete spin crossover (SCO) tetranuclear cages are a unique class of materials that have potential use in next-generation molecular recognition and sensing. In this work, two new edge-bridged SCO FeII4L6 (L = 2,7-bis(((E)-pyridin-2-ylmethylene)amino)benzo[lmn] [3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone) supramolecular cages with different counter anions: ClO4- (2) and CF3SO3- (3) were constructed via subcomponent self-assembly to investigate both solvent and anion influences on their magnetic properties and compare them to cage 1 with a BF4- anion. Pyridyl-hydrazone bidentate ligand scaffolds were employed to replace the 'classical' imidazole/thiazolyl-imine coordination units to induce SCO behaviour in these cages. 2 and 3 were structurally characterized by single-crystal X-ray diffraction analysis and electrospray ionization time-of-flight mass spectrometry. Magnetic susceptibilities of 1-3 and 1-3·desolvated indicate that the solvents' presence is in favor of the low-spin (LS) state. While different counter anions in 1-3·desolvated affect the spin-state configurations of the four FeII metal centers. According to the 57Fe Mössbauer spectral analysis, the spin-state distributions in 1-3 at 80 K are [2 high-spin (HS)-2LS], [1HS-3LS] and [2HS-2LS], respectively and density functional theory calculations were employed to investigate the reasons. These findings provide insights to regulate the spin-state versatility of SCO FeII cage systems in the solid state.

7.
Phys Chem Chem Phys ; 25(43): 29516-29530, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37901907

ABSTRACT

We present a theoretical and experimental study of two tetracoordinate Co(II)-based complexes with semi-coordination interactions, i.e., non-covalent interactions involving the central atom. We argue that such interactions enhance the thermal and structural stability of the compounds, making them appropriate for deposition on substrates, as demonstrated by their successful deposition on graphene. DC magnetometry and high-frequency electron spin resonance (HF-ESR) experiments revealed an axial magnetic anisotropy and weak intermolecular antiferromagnetic coupling in both compounds, supported by theoretical predictions from complete active space self-consistent field calculations complemented by N-electron valence state second-order perturbation theory (CASSCF-NEVPT2), and broken-symmetry density functional theory (BS-DFT). AC magnetometry demonstrated that the compounds are field-induced single-ion magnets (SIMs) at applied static magnetic fields, with slow relaxation of magnetization governed by a combination of quantum tunneling, Orbach, and direct relaxation mechanisms. The structural stability under ambient conditions and after deposition was confirmed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Theoretical modeling by DFT of different configurations of these systems on graphene revealed n-type doping of graphene originating from electron transfer from the deposited molecules, confirmed by electrical transport measurements and Raman spectroscopy.

8.
Inorg Chem ; 62(42): 17499-17509, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37812145

ABSTRACT

A detailed computational study of hypothetical sandwich dysprosium double-decker complexes, bridged by various numbers of aliphatic linkers, was performed to evaluate the effect of the structural modifications on their ground-state magnetic sublevels and assess their potential as candidates for single-molecule magnets (SMMs). The molecular structures of seven complexes were optimized using the TPSSh functional, and the electronic structure and magnetic properties were investigated using the complete active space self-consistent field method (CASSCF). Estimates of the magnetic moment blocking barrier (Ueff) and blocking temperatures (TB) are reported. In addition, a new method based on computed derivatives of effective demagnetization barriers Ueff with respect to vibrational normal modes was introduced and applied to evaluate the impact of spin-phonon coupling on the SMM properties. On the basis of the computed parameters, we have identified promising candidates with properties superior to those of the existing single-molecule magnets.

9.
Dalton Trans ; 52(36): 12717-12732, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37610172

ABSTRACT

Half-sandwich complexes [Ru(η6-pcym)(L1)X]PF6 (1, 3) and [Ir(η5-Cp*)(L1)X]PF6 (2, 4) featuring a thiadiazole-based ligand L1 (2-(furan-2-yl)-5-(pyridin-2-yl)-1,3,4-thiadiazole) were synthesized and characterized by varied analytical methods, including single-crystal X-ray diffraction (X = Cl or I, pcym = p-cymene, Cp* = pentamethylcyclopentadienyl). The structures of the molecules were analysed and interpreted using computational methods such as Density Functional Theory (DFT) and Quantum Theory of Atoms in Molecules (QT-AIM). A 1H NMR spectroscopy study showed that complexes 1-3 exhibited hydrolytic stability while 4 underwent partial iodido/chlorido ligand exchange in phosphate-buffered saline. Moreover, 1-4 demonstrated the ability to oxidize NADH (reduced nicotinamide adenine dinucleotide) to NAD+ with Ir(III) complexes 2 and 4 displaying higher catalytic activity compared to their Ru(II) analogues. None of the complexes interacted with reduced glutathione (GSH). Additionally, 1-4 exhibited greater lipophilicity than cisplatin. In vitro biological analyses were performed in healthy cell lines (CCD-18Co colon and CCD-1072Sk foreskin fibroblasts) as well as in cisplatin-sensitive (A2780) and -resistant (A2780cis) ovarian cancer cell lines. The results indicated that Ir(III) complexes 2 and 4 had no effect on human fibroblasts, demonstrating their selectivity. In contrast, complexes 1 and 4 exhibited moderate inhibitory effects on the metabolic and proliferation activities of the cancer cells tested (selectivity index SI > 3.4 for 4 and 2.6 for cisplatin; SI = IC50(A2780)/IC50(CCD-18Co)), including the cisplatin-resistant cancer cell line. Based on these findings, it is possible to emphasize that mainly complex 4 could represent a further step in the development of selective and highly effective anticancer agents, particularly against resistant tumour types.


Subject(s)
Cisplatin , Ovarian Neoplasms , Female , Humans , Cisplatin/pharmacology , Cell Line, Tumor , Ligands
10.
Dalton Trans ; 52(30): 10402-10414, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37436404

ABSTRACT

In this work, a new family of binuclear NiII-LnIII complexes with the formula [NiLn(L)2(NO3)3]·0.5H2O (Ln = Gd, 1; Tb, 2; Dy, 3; Ho, 4; Er, 5; Yb, 6; Y, 7) was synthesized using a thioether group-bearing Schiff base. Due to the strict hard/soft dichotomy between the 4f and 3d metal ions, selective coordination of NiII and 4f metal ions was achieved with the adjacent soft ONS and hard OO binding pockets of the ligand. All the complexes 1-7 exhibit a NiII centre in a distorted pseudo-octahedral geometry with the LnIII centres in distorted bicapped square-antiprism geometry. The huge distortion around the NiII centres is triggered for the accommodation of larger lanthanoids to the adjacent OO coordination site, and this forces the NiII centres to have a tridentate coordination from the ONS, as intermediate between meridional and facial binding. Field-induced single-molecule magnetic behaviour was observed for heterodinuclear complexes involving Kramers lanthanide ions (LnIII = Dy, Er and Yb), with magnetic relaxation occurring through an Orbach process only for 5. DFT calculations using various functionals (BP86, B3LYP, PBE0, TPSSh, PWPB95, R2SCAN) were applied to calculate the isotropic exchange, showing good agreement with the experiment (JGd-Ni = +1.78 cm-1). CASSCF calculations for NiII and LnIII ions were also performed to reveal detailed information about their electronic structure and magnetic anisotropy, supporting the experimental observations. This study accentuates the mutual distortion of coordination geometry induced by flexibility of the ligand backbone with the simultaneous binding of two different metal ions.

11.
RSC Adv ; 13(17): 11311-11323, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37057262

ABSTRACT

Two new doubly µ 1,1-N3 bridged (1 and 3) and six new doubly µ 1,1-NCO bridged NiII complexes (2, 4-8) with six different N3O donor Schiff base ligands have been synthesized and magneto-structurally characterized. All these neutral complex molecules are isostructural and constitute edge sharing bioctahedral structures. Magnetic studies revealed that all these complexes exhibit ferromagnetic interaction through bridging pseudohalides with ferromagnetic coupling constant J being significantly higher for azide-bridged complexes than that of the cyanate analogues. This is consistent with the literature reported data and also the presence of polarizable π systems and two different N and O donor atoms in cyanate ion, rendering it a poor magnetic coupler in comparison to azide analogues. Although, the magneto-structurally characterized doubly µ 1,1-N3 bridged NiII complexes are abundant, only few such complexes with µ 1,1-bridging NCO- ions are reported in the literature. Remarkably, addition of these six new examples in this ever-growing series of doubly µ 1,1-NCO bridged systems gives us an opportunity to analyse the precise magneto-structural correlation in this system, showing a general trend in which the J value increases with an increase in bridging angles. Therefore, the high degree of structural and magnetic resemblances by inclusion of six new examples in this series is the major achievement of the present work. An elaborate DFT study was performed resulting in magneto-structural correlation showing that nature and value of the J-parameter is defined not only by Ni-Nb-Ni bond angles, but an important role is also played by the Ni1-Ni2-Nb-Xt dihedral angle (Nb and Xt are bridging N and terminal N or O atom of bridging ligands, respectively).

12.
Dalton Trans ; 52(5): 1241-1256, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36606746

ABSTRACT

A series of LnIII complexes of general formula [Ln(H2L1)2(NO3)2(H2O)](NO3) (1-5) [Ln = Dy (1), Tb (2) Ho (3), Er (4), and Yb (5)] and an analogous DyIII complex with ligand H2L2, [Dy(H2L2)2(NO3)3(H2O)](NO3) (6), where H2L1 and H2L2 stand for (E)-2-[(2-hydroxyphenyl)iminomethyl]-6-methoxy-4-methylphenol and (E)-2-[(2-hydroxy-5-methylphenyl)iminomethyl]-6-methoxy-4-methylphenol, respectively, have been synthesized and magneto-structurally characterized. All these complexes are isostructural and isomorphous, in which the zwitterionic form of the ligands predominantly coordinate the metal centers. The magnetic study revealed that complex 3 displays negligible SMM behaviour, while 1 and 6 are zero field SMMs, the performance of which can largely be improved in the presence of an applied dc field by lowering under barrier relaxation processes, and finally 2, 4, and 5 are field-induced SMMs. The most remarkable observation in the present study is the dramatically-enhanced SMM performance in 6 compared to 1, achieved by only a remote methyl substitution at the ligand framework to increase the intermolecular separation. Although SINGLE_ANISO ab initio calculations for 1 and 6 are very similar, the POLY_ANISO module revealed weak dipolar interactions in both the compounds but significant antiferromagnetic interaction in 1, thereby justifying the experimental fact. The present work discloses that even a small substitution such as a methyl group can adequately increase the intermolecular separation, leading to several-fold enhanced effective energy barrier.

13.
Dalton Trans ; 51(47): 18033-18044, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36373440

ABSTRACT

A series of Ni(II) complexes with pyridine-based macrocyclic ligand L (3,12,18-triaza-6,9-dioxabicyclo[12.3.1]octadeca-1(18),14,16-triene) with general formula [Ni(L)(X)2]0/2+ (X = Br- (1), I- (2), CH3CN (3), NCS- (4), imidazole (5)) was prepared and thoroughly investigated. X-ray molecular structures confirmed pentagonal bipyramidal geometry for all studied complexes with a strong Jahn-Teller distortion in the pentagonal equatorial plane and significantly elongated Ni-O distance(s) with a decrease of this distortion by varying axial coligands (CH3CN > Br- > I- > NCS- > imidazole). Direct current magnetic measurements revealed the easy-axis type of magnetic anisotropy with negative as well as positive axial zero-field-splitting parameter D ranging from +6.8 to -14.5 cm-1, which remains not affected in the halogenido series Cl- → Br- → I-, but which increases in the series with N-axial ligands in order CH3CN → NCS- → imidazole. Theoretical calculations helped to elucidate (i) the final coordination numbers 6 + 1 for 1 and 2, and 5 + 2 for 2-5, (ii) the pattern of splitting of d-orbitals, contributions of excited states to the final D-values and their final signs, and (iii) the complexity in the variation of the D and E parameters with elongation of axial bond distances in such strongly distorted systems. The studied complexes did not show any alternating magnetic susceptibility signal, but it was clearly documented that the magnetic anisotropy of the pentagonal bipyramidal Ni(II) complexes can be modulated/tuned by variation of axial coligands. Nevertheless, great care has to be taken for symmetry of the equatorial ligand field.

14.
Dalton Trans ; 51(19): 7681-7694, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35521740

ABSTRACT

Four mononuclear manganese(III) complexes coordinated with photo-active hexadentate azobenzene ligands, [Mn(5azo-sal2-323)](X) (X = Cl, 1; X = BF4, 2; X = ClO4, 3; X = PF6, 4), were prepared. The impact of various counter anions on the stabilization and switching of the spin state of the manganese(III) center was explored through detailed magneto-structural investigation using variable temperature single-crystal X-ray diffraction, magnetic, spectroscopic, and spectroelectrochemical studies, along with theoretical calculations. All four complexes consisted of an isostructural monocationic distorted octahedral MnN4O2 coordination environment offered by the hexadentate ligand and Cl-, BF4-, ClO4-, and PF6- as counter anions respectively. Complex 1 with a spherical Cl- counter anion showed a reversible and gradual spin-state switching between low-spin (LS) (S = 1) and high-spin (HS) (S = 2) states above 400 K, where non-covalent cation-anion interactions played a significant role in stabilizing the LS state. While, irrespective of the shape of the counter anion, complexes 2-4 remained in the HS state throughout the measured temperature range of 300-2 K, where strong π-π interaction between the azobenzene motifs among cationic units played a substantial role in stabilizing the HS state. Furthermore, magnetic data analyses revealed significantly large zero-field splitting in the S = 1 state for 1 (D = 19.4 cm-1, E/D = 0.008) in comparison with that in the S = 2 state for 2-4 (D = 3.99-4.97 cm-1, E/D = 0.002-0.195). Spectroelectrochemical investigations revealed the quasi-reversible reduction and oxidation of the manganese(III) center to manganese(II) and manganese(IV), respectively. A detailed theoretical calculation at the DFT and CASSCF level of theory was carried out to better understand the magneto-structural correlation.

15.
Chem Asian J ; 17(16): e202200404, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35617522

ABSTRACT

Four cobalt(II) complexes, [Co(L1)2 (NCX)2 (MeOH)2 ] (X=S (1), Se (2)) and {[Co(L2)2 (NCX)2 ]}n (X=S (3), Se (4)) (L1=2,5-dipyridyl-3,4,-ethylenedioxylthiophene and L2=2,5-diethynylpyridinyl-3,4-ethylenedioxythiophene), were synthesized by incorporating ethylenedioxythiophene based redox-active luminescence ligands. All these complexes have been well characterized using single-crystal X-ray diffraction analyses, spectroscopic and magnetic investigations. Magneto-structural studies showed that 1 and 2 adopt a mononuclear structure with CoN4 O2 octahedral coordination geometry while 3 and 4 have a 2D [4×4] rhombic grid coordination networks (CNs) where each cobalt(II) center is in a CoN6 octahedral coordination environment. Static magnetic measurements reveal that all four complexes displayed a high spin (HS) (S=3/2) state between 2 and 280 K which was further confirmed by X-band and Q-band EPR studies. Remarkably, along with the molecular dimensionality (0D and 2D) the modification in the axial coligands lead to a significant difference in the dynamic magnetic properties of the monomers and CNs at low temperatures. All complexes display slow magnetic relaxation behavior under an external dc magnetic field. For the complexes with NCS- as coligand observed higher energy barrier for spin reversal in comparison to the complexes with NCSe- as coligand, while mononuclear complex 1 exhibited a higher energy barrier than that of CN 3. Theoretical calculations at the DFT and CASSCF level of theory have been performed to get more insight into the electronic structure and magnetic properties of all four complexes.

16.
Materials (Basel) ; 15(3)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35161010

ABSTRACT

By simple reactions involving various cobalt(II) carboxylates (acetate and in situ prepared pivalate and 4-hydroxybenzoate salts) and neocuproine (neo), we were able to prepare three different carboxylate complexes with the general formula [Co(neo)(RCOO)2] (R = -CH3 for 1, (CH3)3C- for 2, and 4OH-C4H6- for 3). The [Co(neo)(RCOO)2] molecules in the crystal structures of 1-3 adopt a rather distorted coordination environment, with the largest trigonal distortion observed for 1, whereas 2 and 3 are similarly distorted from ideal octahedral geometry. The combined theoretical and experimental investigations of magnetic properties revealed that the spin Hamiltonian formalism was not a valid approach and the L-S Hamiltonian had to be used to reveal very large magnetic anisotropies for 1-3. The measurements of AC susceptibility showed that all three compounds exhibited slow-relaxation of magnetization in a weak external static magnetic field, and thus can be classified as field-induced single-ion magnets. It is noteworthy that 1 also exhibits a weak AC signal in a zero-external magnetic field.

17.
Bioinorg Chem Appl ; 2021: 6736908, 2021.
Article in English | MEDLINE | ID: mdl-34970307

ABSTRACT

Two mononuclear Cu(II) complexes, [Cu(phen)2(HL)]ClO4·H2O·2DMF (1) and [Cu(phen)2(HL)2]·EtOH (2), comprising 1,10-phentantroline (phen) and 2-(1H-tetrazol-5-yl)-1H-indole ligand (H2L) ligands are reported. Analysis and characterization of the samples were performed using standard physicochemical techniques, elemental analysis, nuclear magnetic resonance, Fourier transform infrared spectroscopy, and UV-vis spectroscopy. Single-crystal X-ray crystallography revealed the formation of a pentacoordinate complex in 1 and a hexacoordinate complex in 2, in which the anionic ligand HL- has undergone monodentate coordination through the tetrazole unit. Furthermore, the crystal structure of H2L·MeOH is also discussed. The potential application of compounds 1 and 2 in bioinorganic chemistry was addressed by investigating their radical scavenging activity with the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and the results were supported also by theoretical calculations.

18.
Dalton Trans ; 50(39): 13883-13893, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34523627

ABSTRACT

A series of heterobimetallic LnIII-VIV compounds [Ln(VO)L(NO3)3(H2O)] (Ln = Gd(1), Tb(2), Dy(3), and Er(4)) assembled by a Schiff base ligand (H2L = N,N'-bis(1-hydroxy-2-benzylidene-6-methoxy)-1,7-diamino-4-azaheptane) were prepared and studied with experimental and theoretical methods. The single-crystal X-ray analysis revealed the change of the coordination number from 10 found in 1-3 to 9 confirmed in 4. The DC magnetic data were fit with several Hamiltonians to extract the exchange and anisotropy parameters of complexes 1-4. This investigation of magnetic properties was carried out using both DFT and CASSCF theoretical calculations. It was found out that exchange interactions in 1, 3 and 4 are antiferromagnetic, while 2 has ferromagnetic exchange interactions. Moreover, the AC susceptibility measurements revealed the field-induced slow relaxation of magnetization in complexes 2 and 3 which is complicated by the presence of three relaxation channels. Nevertheless, these compounds belong to the first TbIII-VIV and DyIII-VIV single-molecule magnets in this class of compounds.

19.
Dalton Trans ; 50(34): 11861-11877, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34369499

ABSTRACT

Two new families of cobalt(ii/iii)-lanthanide(iii) coordination aggregates have been reported: tetranuclear [LnCoL2(N-BuDEA)2(O2CCMe3)4(H2O)2]·(MeOH)n·(H2O)m (Ln = Gd, 1; Tb, 2; Dy, 3; n = 2, m = 10 for 1 and 2; n = 6, m = 2 for 3) and pentanuclear LnCoIICoL2(N-BuDEA)2(O2CCMe3)6(MeOH)2 (Ln = Dy, 4; Ho, 5) formed from the reaction of two aggregation assisting ligands H2L (o-vanillin oxime) and N-BuDEAH2 (N-butyldiethanolamine). A change in preference from a lower to higher nuclearity structure was observed on going across the lanthanide series brought about by the variation in the size of the LnIII ions. An interesting observation was made for the varying sequence of addition of the ligands into the reaction medium paving the way to access both structural types for Ln = Dy. HRMS (+ve) of solutions gave further insight into the formation of the aggregates via different pathways. The tetranuclear complexes adopt a modified butterfly structure with a more complex bridging network while trapping of an extra CoII ion in the pentanuclear complexes destroys this arrangement putting the Co-Co-Co axis above the Ln-Ln axis. Direct current (dc) magnetic susceptibility measurements reveal weak antiferromagnetic coupling in 1. Complexes 2 and 5 display no slow magnetic relaxation, whereas complexes 3 and 4 display out-of-phase signals at low temperature in ac susceptibility measurements. All compounds were analyzed with DFT and CASSCF calculations and informations about the single-ion anisotropies and mutual 4f-4f/4f-3d magnetic interactions were derived.

20.
Dalton Trans ; 50(36): 12517-12527, 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34374397

ABSTRACT

A family of four isostructural [Ln2Ni2(L)2(µ3-OCH3)2(µ1,3-PhCO2)2(PhCO2)2(CH3OH)4]·2CH3OH [where Ln = Gd (1), Tb (2), Dy (3) and Ho (4)] complexes has been synthesized using Schiff base ligand 2-[{(2-hydroxybenzyl)imino}methyl]-6-methoxyphenol (H2L). All the complexes possess a partial di-cubane core structure where the growth of the core is contingent upon the ligand anions and solvent generated µ3-OCH3 groups. DC magnetic analysis revealed dominating ferromagnetic interactions between the metal ions, however, we find no slow relaxation characteristics in the AC susceptibility. Further insight into the magnetic behavior of the reported complexes was achieved using DFT and CASSCF theoretical calculations, leading to the comprehension of the fast relaxation characteristics observed by magnetometry.

SELECTION OF CITATIONS
SEARCH DETAIL
...