Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
J Cancer ; 11(3): 702-715, 2020.
Article in English | MEDLINE | ID: mdl-31942194

ABSTRACT

Background: Cell-membrane expressing enzymes such as ADAM (a disintegrin and metalloproteinase) superfamily members are thought to be key catalysts of vital cellular functions. To directly measure these enzymes and determine their association with particular cells and functions, individual-cell membrane-bound enzyme activity assays are required, but unavailable. Methods: We developed two such assays, using a fluorescence resonance energy transfer (FRET) peptide substrate (FPS) and flow cytometry. One assay measured live-cell natural processing of FPS and binding of its fluorescent product onto individual-cell membrane-bound enzymes. The other assay measured processing of specifically-bound and glutaraldehyde-crosslinked FPS, and consequent generation of its coupled fluorescent product onto individual-cell membrane-bound enzymes. Results: Confocal-microscopy imaging indicated that proteolytic processing of FPS selectively occurred on and labeled cell membrane of individual cells. The new assays measured specific increases of cell-associated FPS fluorescent product in substrate-concentration-, temperature- and time-dependent manners. A large proportion of processed FPS fluorescent products remained cell-associated after cell washing, indicating their binding to cell-membrane expressing enzymes. The assays measured higher levels of cell-associated FPS fluorescent product on wild-type than ADAM10-knockout mouse fibroblasts and on human monocytes than lymphocytes, which correlated with ADAM10 presence and expression levels on cell membrane, respectively. Furthermore, the enzyme activity assays could be combined with fluorescent anti-ADAM10 antibody staining to co-label and more directly associate enzyme activity and ADAM10 protein levels on cell membrane of individual cells. Conclusions: We report on two novel assays for measuring cell-membrane anchored enzyme activity on individual cells, and their potential use to directly study specific biology of cell-surface-expressing proteases.

2.
J Cancer ; 9(14): 2559-2570, 2018.
Article in English | MEDLINE | ID: mdl-30026855

ABSTRACT

Background: Increases in expression of ADAM10 and ADAM17 genes and proteins are inconsistently found in cancer lesions, and are not validated as clinically useful biomarkers. The enzyme-specific proteolytic activities, which are solely mediated by the active mature enzymes, directly reflect enzyme cellular functions and might be superior biomarkers than the enzyme gene or protein expressions, which comprise the inactive proenzymes and active and inactivated mature enzymes. Methods: Using a recent modification of the proteolytic activity matrix analysis (PrAMA) measuring specific enzyme activities in cell and tissue lysates, we examined the specific sheddase activities of ADAM10 (ADAM10sa) and ADAM17 (ADAM17sa) in human non-small cell lung-carcinoma (NSCLC) cell lines, patient primary tumors and blood exosomes, and the noncancerous counterparts. Results: NSCLC cell lines and patient tumors and exosomes consistently showed significant increases of ADAM10sa relative to their normal, inflammatory and/or benign-tumor controls. Additionally, stage IA-IIB NSCLC primary tumors of patients who died of the disease exhibited greater increases of ADAM10sa than those of patients who survived 5 years following diagnosis and surgery. In contrast, NSCLC cell lines and patient tumors and exosomes did not display increases of ADAM17sa. Conclusions: This study is the first to investigate enzyme-specific proteolytic activities as potential cancer biomarkers. It provides a proof-of-concept that ADAM10sa could be a biomarker for NSCLC early detection and outcome prediction. To ascertain that ADAM10sa is a useful cancer biomarker, further robust clinical validation studies are needed.

3.
J Cancer ; 8(19): 3916-3932, 2017.
Article in English | MEDLINE | ID: mdl-29187866

ABSTRACT

Increases in expression of ADAM10 and ADAM17 genes and proteins have been evaluated, but not validated as cancer biomarkers. Specific enzyme activities better reflect enzyme cellular functions, and might be better biomarkers than enzyme genes or proteins. However, no high throughput assay is available to test this possibility. Recent studies have developed the high throughput real-time proteolytic activity matrix analysis (PrAMA) that integrates the enzymatic processing of multiple enzyme substrates with mathematical-modeling computation. The original PrAMA measures with significant accuracy the activities of individual metalloproteinases expressed on live cells. To make the biomarker assay usable in clinical practice, we modified PrAMA by testing enzymatic activities in cell and tissue lysates supplemented with broad-spectrum non-MP enzyme inhibitors, and by maximizing the assay specificity using systematic mathematical-modeling analyses. The modified PrAMA accurately measured the absence and decreases of ADAM10 sheddase activity (ADAM10sa) and ADAM17sa in ADAM10-/- and ADAM17-/- mouse embryonic fibroblasts (MEFs), and ADAM10- and ADAM17-siRNA transfected human cancer cells, respectively. It also measured the restoration and inhibition of ADAM10sa in ADAM10-cDNA-transfected ADAM10-/- MEFs and GI254023X-treated human cancer cell and tissue lysates, respectively. Additionally, the modified PrAMA simultaneously quantified with significant accuracy ADAM10sa and ADAM17sa in multiple human tumor specimens, and showed the essential characteristics of a robust high throughput multiplex assay that could be broadly used in biomarker studies. Selectively measuring specific enzyme activities, this new clinically applicable assay is potentially superior to the standard protein- and gene-expression assays that do not distinguish active and inactive enzyme forms.

4.
Epigenetics ; 10(7): 622-32, 2015.
Article in English | MEDLINE | ID: mdl-25985363

ABSTRACT

Neurofilament heavy polypeptide (NEFH) has recently been identified as a candidate DNA hypermethylated gene within the functional breast cancer hypermethylome. NEFH exists in a complex with neurofilament medium polypeptide (NEFM) and neurofilament light polypeptide (NEFL) to form neurofilaments, which are structural components of the cytoskeleton in mature neurons. Recent studies reported the deregulation of these proteins in several malignancies, suggesting that neurofilaments may have a role in other cell types as well. Using a comprehensive approach, we studied the epigenetic inactivation of neurofilament genes in breast cancer and the functional significance of this event. We report that DNA methylation-associated silencing of NEFH, NEFL, and NEFM in breast cancer is frequent, cancer-specific, and correlates with clinical features of disease progression. DNA methylation-mediated inactivation of these genes occurs also in multiple other cancer histologies including pancreas, gastric, and colon. Restoration of NEFH function, the major subunit of the neurofilament complex, reduces proliferation and growth of breast cancer cells and arrests them in Go/G1 phase of the cell cycle along with a reduction in migration and invasion. These findings suggest that DNA methylation-mediated silencing of the neurofilament genes NEFH, NEFM, and NEFL are frequent events that may contribute to the progression of breast cancer and possibly other malignancies.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Disease Progression , Epigenesis, Genetic , Gene Silencing , Neurofilament Proteins/genetics , Cell Cycle Checkpoints , Cell Line, Tumor , DNA Methylation , Female , Humans , Intermediate Filaments/pathology , Promoter Regions, Genetic
5.
Curr Neuropharmacol ; 11(2): 141-59, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23997750

ABSTRACT

The bed nucleus of the stria terminalis (BNST) is a heterogeneous and complex limbic forebrain structure, which plays an important role in controlling autonomic, neuroendocrine and behavioral responses. The BNST is thought to serve as a key relay connecting limbic forebrain structures to hypothalamic and brainstem regions associated with autonomic and neuroendocrine functions. Its control of physiological and behavioral activity is mediated by local action of numerous neurotransmitters. In the present review we discuss the role of the BNST in control of both autonomic and neuroendocrine function. A description of BNST control of cardiovascular and hypothalamus-pituitary-adrenal axisactivity at rest and during physiological challenges (stress and physical exercise) is presented. Moreover, evidence for modulation of hypothalamic magnocellular neurons activity is also discussed. We attempt to focus on the discussion of BNST neurochemical mechanisms. Therefore, the source and targets of neurochemical inputs to BNST subregions and their role in control of autonomic and neuroendocrine function is discussed in details.

6.
PLoS One ; 7(9): e46044, 2012.
Article in English | MEDLINE | ID: mdl-23029379

ABSTRACT

Stress is the most commonly reported precipitating factor for seizures in patients with epilepsy. Despite compelling anecdotal evidence for stress-induced seizures, animal models of the phenomena are sparse and possible mechanisms are unclear. Here, we tested the hypothesis that increased levels of the stress-associated hormone corticosterone (CORT) would increase epileptiform activity and spontaneous seizure frequency in mice rendered epileptic following pilocarpine-induced status epilepticus. We monitored video-EEG activity in pilocarpine-treated mice 24/7 for a period of four or more weeks, during which animals were serially treated with CORT or vehicle. CORT increased the frequency and duration of epileptiform events within the first 24 hours of treatment, and this effect persisted for up to two weeks following termination of CORT injections. Interestingly, vehicle injection produced a transient spike in CORT levels - presumably due to the stress of injection - and a modest but significant increase in epileptiform activity. Neither CORT nor vehicle treatment significantly altered seizure frequency; although a small subset of animals did appear responsive. Taken together, our findings indicate that treatment of epileptic animals with exogenous CORT designed to mimic chronic stress can induce a persistent increase in interictal epileptiform activity.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Corticosterone/pharmacology , Seizures/drug therapy , Status Epilepticus/chemically induced , Status Epilepticus/physiopathology , Animals , Anti-Inflammatory Agents/blood , Anti-Inflammatory Agents/metabolism , Corticosterone/blood , Corticosterone/metabolism , Male , Mice , Mice, Inbred C57BL , Pilocarpine , Status Epilepticus/blood , Stress, Physiological
7.
Ann Surg Oncol ; 10(8): 882-9, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14527906

ABSTRACT

BACKGROUND: Aberrant methylation of tumor-suppressor genes is associated with a loss of gene function that can afford selective growth advantages to sporadic neoplastic cells arising during gallbladder inflammation. METHODS: Fifty-four gallbladder neoplasms were selected from tumor banks in the United States and Chile. Each of the neoplasms was subjected to methylation-specific polymerase chain reaction to detect promoter methylation associated with six candidate tumor-suppressor genes (p16, APC, methylguanine methyltransferase, hMLH1, retinoic acid receptor beta-2, and p73) implicated in multiple human cancer types. RESULTS: Aberrant methylation of any of the six candidate tumor-suppressor genes was detected in 72% of the gallbladder neoplasms, 28% of the cases of chronic cholecystitis, and in only 1 of the 15 normal gallbladder controls. The four most commonly methylated genes in the gallbladder cancers were p16 (56%), p73 (28%), APC (27%), and hMLH1 (14%). Significant differences in gene methylation were discovered between US gallbladder cancers and those from Chile, where gallbladder cancer is one of the leading causes of cancer-related deaths. APC methylation was present in 42% of the US cases but in only 14% of the Chilean tumors (P =.028). p73 methylation was common among the Chilean cancers (40%) compared with those from the United States (13%; P =.034). CONCLUSIONS: The acquisition of hypermethylation at multiple tumor-suppressor gene-promoter sites may contribute to tumor formation and progression within the chronically inflamed gallbladder. The apparent differences in methylation patterns among the Chilean and US gallbladder cases may indicate a unique biology associated with this cancer in different parts of the world.


Subject(s)
Adenocarcinoma/genetics , Cholecystitis/genetics , Cholecystitis/pathology , Gallbladder Neoplasms/genetics , Genes, Tumor Suppressor , Adenocarcinoma/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Chile , Chronic Disease , DNA Methylation , Female , Gallbladder Neoplasms/pathology , Humans , Male , Middle Aged , Polymerase Chain Reaction , Promoter Regions, Genetic , United States
SELECTION OF CITATIONS
SEARCH DETAIL