Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
NPJ Microgravity ; 9(1): 42, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37301926

ABSTRACT

Neutral buoyancy has been used as an analog for microgravity from the earliest days of human spaceflight. Compared to other options on Earth, neutral buoyancy is relatively inexpensive and presents little danger to astronauts while simulating some aspects of microgravity. Neutral buoyancy removes somatosensory cues to the direction of gravity but leaves vestibular cues intact. Removal of both somatosensory and direction of gravity cues while floating in microgravity or using virtual reality to establish conflicts between them has been shown to affect the perception of distance traveled in response to visual motion (vection) and the perception of distance. Does removal of somatosensory cues alone by neutral buoyancy similarly impact these perceptions? During neutral buoyancy we found no significant difference in either perceived distance traveled nor perceived size relative to Earth-normal conditions. This contrasts with differences in linear vection reported between short- and long-duration microgravity and Earth-normal conditions. These results indicate that neutral buoyancy is not an effective analog for microgravity for these perceptual effects.

2.
NPJ Microgravity ; 9(1): 52, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37380706

ABSTRACT

The perceptual upright results from the multisensory integration of the directions indicated by vision and gravity as well as a prior assumption that upright is towards the head. The direction of gravity is signalled by multiple cues, the predominant of which are the otoliths of the vestibular system and somatosensory information from contact with the support surface. Here, we used neutral buoyancy to remove somatosensory information while retaining vestibular cues, thus "splitting the gravity vector" leaving only the vestibular component. In this way, neutral buoyancy can be used as a microgravity analogue. We assessed spatial orientation using the oriented character recognition test (OChaRT, which yields the perceptual upright, PU) under both neutrally buoyant and terrestrial conditions. The effect of visual cues to upright (the visual effect) was reduced under neutral buoyancy compared to on land but the influence of gravity was unaffected. We found no significant change in the relative weighting of vision, gravity, or body cues, in contrast to results found both in long-duration microgravity and during head-down bed rest. These results indicate a relatively minor role for somatosensation in determining the perceptual upright in the presence of vestibular cues. Short-duration neutral buoyancy is a weak analogue for microgravity exposure in terms of its perceptual consequences compared to long-duration head-down bed rest.

3.
J Vestib Res ; 32(4): 325-340, 2022.
Article in English | MEDLINE | ID: mdl-34719448

ABSTRACT

BACKGROUND: Humans demonstrate many physiological changes in microgravity for which long-duration head down bed rest (HDBR) is a reliable analog. However, information on how HDBR affects sensory processing is lacking. OBJECTIVE: We previously showed [25] that microgravity alters the weighting applied to visual cues in determining the perceptual upright (PU), an effect that lasts long after return. Does long-duration HDBR have comparable effects? METHODS: We assessed static spatial orientation using the luminous line test (subjective visual vertical, SVV) and the oriented character recognition test (PU) before, during and after 21 days of 6° HDBR in 10 participants. Methods were essentially identical as previously used in orbit [25]. RESULTS: Overall, HDBR had no effect on the reliance on visual relative to body cues in determining the PU. However, when considering the three critical time points (pre-bed rest, end of bed rest, and 14 days post-bed rest) there was a significant decrease in reliance on visual relative to body cues, as found in microgravity. The ratio had an average time constant of 7.28 days and returned to pre-bed-rest levels within 14 days. The SVV was unaffected. CONCLUSIONS: We conclude that bed rest can be a useful analog for the study of the perception of static self-orientation during long-term exposure to microgravity. More detailed work on the precise time course of our effects is needed in both bed rest and microgravity conditions.


Subject(s)
Bed Rest , Weightlessness , Head-Down Tilt/physiology , Humans , Perception , Time Factors , Weightlessness Simulation
4.
Stress Health ; 32(5): 514-523, 2016 Dec.
Article in English | MEDLINE | ID: mdl-26449710

ABSTRACT

Beside its positive impact on physical health, exercise is indicated to positively affect cognitive performance based on a relocation of cortical activity. This study examined the influence of different types of breaks on cognitive performance and related cortical activity in office-based employees. Breaks were filled with exercise, resting or a usual break and a control condition where employees continued working without any break. Cognitive performance was assessed using the d2-R test and two commercially available cognitive tasks. Brain cortical activity was recorded using electroencephalography before and after breaks. Individual's mood was analysed using a profile of mood state. Results indicate a positive effect of a 3-min boxing intervention on cognitive performance, mirrored by a decrease in prefrontal cortex activity. Although perceived psychological state was increased after the usual break, this is reflected in neither cortical activity nor cognitive performance. With respect to the fact that also bike activity resulted an increase in prefrontal alpha-2 activity, a positive effect of exercise on neuro-cognitive performance can be stated. Health and economic benefits may result from brief physical activity breaks and help to maintain workplace performance and job satisfaction. Copyright © 2015 John Wiley & Sons, Ltd.


Subject(s)
Exercise Therapy/methods , Prefrontal Cortex/physiology , Psychomotor Performance/physiology , Workplace , Adult , Female , Humans , Male , Middle Aged , Treatment Outcome
5.
Neural Plast ; 2015: 523250, 2015.
Article in English | MEDLINE | ID: mdl-26366305

ABSTRACT

Virtual reality environments are increasingly being used to encourage individuals to exercise more regularly, including as part of treatment those with mental health or neurological disorders. The success of virtual environments likely depends on whether a sense of presence can be established, where participants become fully immersed in the virtual environment. Exposure to virtual environments is associated with physiological responses, including cortical activation changes. Whether the addition of a real exercise within a virtual environment alters sense of presence perception, or the accompanying physiological changes, is not known. In a randomized and controlled study design, moderate-intensity Exercise (i.e., self-paced cycling) and No-Exercise (i.e., automatic propulsion) trials were performed within three levels of virtual environment exposure. Each trial was 5 minutes in duration and was followed by posttrial assessments of heart rate, perceived sense of presence, EEG, and mental state. Changes in psychological strain and physical state were generally mirrored by neural activation patterns. Furthermore, these changes indicated that exercise augments the demands of virtual environment exposures and this likely contributed to an enhanced sense of presence.


Subject(s)
Cerebral Cortex/physiology , Exercise/physiology , Neurons/physiology , User-Computer Interface , Adult , Affect , Alpha Rhythm/physiology , Beta Rhythm/physiology , Bicycling , Computer Simulation , Electroencephalography , Environment , Female , Heart Rate/physiology , Humans , Male , Random Allocation , Young Adult
6.
Exp Brain Res ; 233(4): 1321-9, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25630906

ABSTRACT

Recently, virtual environments (VEs) are suggested to encourage users to exercise regularly. The benefits of chronic exercise on cognitive performance are well documented in non-VE neurophysiological and behavioural studies. Based on event-related potentials (ERP) such as the N200 and P300, cognitive processing may be interpreted on a neuronal level. However, exercise-related neuroelectric adaptation in VE remains widely unclear and thus characterizes the primary aim of the present study. Twenty-two healthy participants performed active (moderate cycling exercise) and passive (no exercise) sessions in three VEs (control, front, surround), each generating a different sense of presence. Within sessions, conditions were randomly assigned, each lasting 5 min and including a choice reaction-time task to assess cognitive performance. According to the international 10:20 system, EEG with real-time triggered stimulus onset was recorded, and peaks of N200 and P300 components (amplitude, latency) were exported for analysis. Heart rate was recorded, and sense of presence assessed prior to and following each session and condition. Results revealed an increase in ERP amplitudes (N200: p < 0.001; P300: p < 0.001) and latencies (N200: p < 0.001) that were most pronounced over fronto-central and occipital electrode sites relative to an increased sense of presence (p < 0.001); however, ERP were not modulated by exercise (each p > 0.05). Hypothesized to mirror cognitive processing, decreases of cognitive performance's accuracy and reaction time failed significance. With respect to previous research, the present neuroelectric adaptation gives reason to believe in compensative neuronal resources that balance demanding cognitive processing in VE to avoid behavioural inefficiency.


Subject(s)
Brain Mapping , Brain/physiology , Cognition/physiology , Evoked Potentials/physiology , Exercise/physiology , User-Computer Interface , Adult , Analysis of Variance , Electroencephalography , Exercise Test , Female , Heart Rate/physiology , Humans , Male , Mathematics , Neuropsychological Tests , Perception/physiology , Reaction Time/physiology , Young Adult
7.
PLoS One ; 9(9): e106207, 2014.
Article in English | MEDLINE | ID: mdl-25184481

ABSTRACT

Might the gravity levels found on other planets and on the moon be sufficient to provide an adequate perception of upright for astronauts? Can the amount of gravity required be predicted from the physiological threshold for linear acceleration? The perception of upright is determined not only by gravity but also visual information when available and assumptions about the orientation of the body. Here, we used a human centrifuge to simulate gravity levels from zero to earth gravity along the long-axis of the body and measured observers' perception of upright using the Oriented Character Recognition Test (OCHART) with and without visual cues arranged to indicate a direction of gravity that differed from the body's long axis. This procedure allowed us to assess the relative contribution of the added gravity in determining the perceptual upright. Control experiments off the centrifuge allowed us to measure the relative contributions of normal gravity, vision, and body orientation for each participant. We found that the influence of 1 g in determining the perceptual upright did not depend on whether the acceleration was created by lying on the centrifuge or by normal gravity. The 50% threshold for centrifuge-simulated gravity's ability to influence the perceptual upright was at around 0.15 g, close to the level of moon gravity but much higher than the threshold for detecting linear acceleration along the long axis of the body. This observation may partially explain the instability of moonwalkers but is good news for future missions to Mars.


Subject(s)
Astronauts , Gravity Sensing/physiology , Orientation/physiology , Proprioception/physiology , Space Perception/physiology , Visual Perception/physiology , Acceleration , Adult , Centrifugation , Cues , Female , Gravitation , Humans , Male , Moon , Posture , Space Simulation
8.
J Vis ; 12(10): 7, 2012 Sep 12.
Article in English | MEDLINE | ID: mdl-22976397

ABSTRACT

When illusory self-motion is induced in a stationary observer by optic flow, the perceived distance traveled is generally overestimated relative to the distance of a remembered target (Redlick, Harris, & Jenkin, 2001): subjects feel they have gone further than the simulated distance and indicate that they have arrived at a target's previously seen location too early. In this article we assess how the radial and laminar components of translational optic flow contribute to the perceived distance traveled. Subjects monocularly viewed a target presented in a virtual hallway wallpapered with stripes that periodically changed color to prevent tracking. The target was then extinguished and the visible area of the hallway shrunk to an oval region 40° (h) × 24° (v). Subjects either continued to look centrally or shifted their gaze eccentrically, thus varying the relative amounts of radial and laminar flow visible. They were then presented with visual motion compatible with moving down the hallway toward the target and pressed a button when they perceived that they had reached the target's remembered position. Data were modeled by the output of a leaky spatial integrator (Lappe, Jenkin, & Harris, 2007). The sensory gain varied systematically with viewing eccentricity while the leak constant was independent of viewing eccentricity. Results were modeled as the linear sum of separate mechanisms sensitive to radial and laminar optic flow. Results are compatible with independent channels for processing the radial and laminar flow components of optic flow that add linearly to produce large but predictable errors in perceived distance traveled.


Subject(s)
Distance Perception/physiology , Motion Perception/physiology , Optic Flow/physiology , Adult , Female , Humans , Male , Photic Stimulation/methods
9.
Exp Brain Res ; 202(1): 155-69, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20024650

ABSTRACT

Sensitivity to many visual stimuli, and, in particular, image displacement, is reduced during a change in fixation (saccade) compared to when the eye is still. In these experiments, we studied the sensitivity of observers to ecologically relevant image translations of large, complex, real world scenes either during horizontal saccades or during fixation. In the first experiment, we found that such displacements were much less detectable during saccades than during fixation. Qualitatively, even when trans-saccadic scene changes were detectable, they were less salient and appeared slower than equivalent changes in the absence of a saccade. Two further experiments followed up on this observation and estimated the perceived magnitude of trans-saccadic apparent motion using a two-interval forced-choice procedure (Experiment 2) and a magnitude estimation procedure (Experiment 3). Both experiments suggest that trans-saccadic displacements were perceived as smaller than equivalent inter-saccadic displacements. We conclude that during saccades, the magnitude of the apparent motion signal is attenuated as well as its detectability.


Subject(s)
Fixation, Ocular , Saccades , Visual Perception , Adult , Eye Movement Measurements , Female , Humans , Male , Photic Stimulation , Probability , Psychophysics , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL