Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(41): e2412526121, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39352929

ABSTRACT

A fundamental question in evolutionary biology concerns the relative contributions of phenotypic plasticity vs. local adaptation (genotypic specialization) in enabling wide-ranging species to inhabit diverse environmental conditions. Here, we conduct a long-term hypoxia acclimation experiment to assess the relative roles of local adaptation and plasticity in enabling highland and lowland deer mice (Peromyscus maniculatus) to sustain aerobic thermogenesis at progressively increasing elevations. We assessed the relative physiological performance capacities of highland and lowland natives as they were exposed to progressive, stepwise increases in hypoxia, simulating the gradual ascent from sea level to an elevation of 6,000 m. The final elevation of 6,000 m far exceeds the highest attainable elevations within the species' range, and therefore tests the animals' ability to tolerate levels of hypoxia that surpass the prevailing conditions within their current distributional limits. Our results demonstrate that highland natives exhibit superior thermogenic capacities at the most severe levels of hypoxia, suggesting that the species' broad fundamental niche and its ability to inhabit such a broad range of elevational zones is attributable to genetically based local adaptation, including evolved changes in plasticity. Transcriptomic and physiological measurements identify evolved changes in the acclimation response to hypoxia that contribute to the enhanced thermogenic capacity of highland natives.


Subject(s)
Acclimatization , Altitude , Hypoxia , Peromyscus , Thermogenesis , Animals , Peromyscus/physiology , Peromyscus/genetics , Acclimatization/physiology , Hypoxia/physiopathology , Thermogenesis/physiology , Adaptation, Physiological , Cold Temperature , Cold-Shock Response/physiology , Biological Evolution , Male
2.
bioRxiv ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39282442

ABSTRACT

Leaf-eared mice (genus Phyllotis) are among the most widespread and abundant small mammals in the Andean Altiplano, but species boundaries and distributional limits are often poorly delineated due to sparse survey data from remote mountains and high-elevation deserts. Here we report a combined analysis of mitochondrial DNA variation and whole-genome sequence (WGS) variation in Phyllotis mice to delimit species boundaries, to assess the timescale of diversification of the group, and to examine evidence for interspecific hybridization. Estimates of divergence dates suggest that most diversification of Phyllotis occurred during the past 3 million years. Consistent with the Pleistocene Aridification hypothesis, our results suggest that diversification of Phyllotis largely coincided with climatically induced environmental changes in the mid- to late Pleistocene. Contrary to the Montane Uplift hypothesis, most diversification in the group occurred well after the major phase of uplift of the Central Andean Plateau. Species delimitation analyses revealed surprising patterns of cryptic diversity within several nominal forms, suggesting the presence of much undescribed alpha diversity in the genus. Results of genomic analyses revealed evidence of ongoing hybridization between the sister species Phyllotis limatus and P. vaccarum and suggest that the contemporary zone of range overlap between the two species represents an active hybrid zone.

3.
bioRxiv ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38979138

ABSTRACT

A fundamental question in evolutionary biology concerns the relative contributions of phenotypic plasticity vs. local adaptation (genotypic specialization) in enabling wide-ranging species to inhabit diverse environmental conditions. Here we conduct a long-term hypoxia acclimation experiment to assess the relative roles of local adaptation and plasticity in enabling highland and lowland deer mice (Peromyscus maniculatus) to sustain aerobic thermogenesis at progressively increasing elevations. We assessed the relative physiological performance capacities of highland and lowland natives as they were exposed to progressive, stepwise increases in hypoxia, simulating the gradual ascent from sea level to an elevation of 6000 m. The final elevation of 6000 m far exceeds the highest attainable elevations within the species' range, and therefore tests the animals' ability to tolerate levels of hypoxia that surpass the prevailing conditions within their current distributional limits. Our results demonstrate that highland natives exhibit superior thermogenic capacities at the most severe levels of hypoxia, suggesting that the species' broad fundamental niche and its ability to inhabit such a broad range of elevational zones is attributable to a combination of genetically based local adaptation and plasticity. Transcriptomic and physiological measurements identify evolved changes in the acclimation response to hypoxia that contribute to the enhanced thermogenic capacity of highland natives.

4.
Am Nat ; 203(6): 726-735, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781524

ABSTRACT

AbstractIn the world's highest mountain ranges, uncertainty about the upper elevational range limits of alpine animals represents a critical knowledge gap regarding the environmental limits of life and presents a problem for detecting range shifts in response to climate change. Here we report results of mountaineering mammal surveys in the Central Andes, which led to the discovery of multiple species of mice living at extreme elevations that far surpass previously assumed range limits for mammals. We livetrapped small mammals from ecologically diverse sites spanning >6,700 m of vertical relief, from the desert coast of northern Chile to the summits of the highest volcanoes in the Andes. We used molecular sequence data and whole-genome sequence data to confirm the identities of species that represent new elevational records and to test hypotheses regarding species limits. These discoveries contribute to a new appreciation of the environmental limits of vertebrate life.


Subject(s)
Altitude , Animals , Mice/genetics , Mice/physiology , Chile , Phylogeny , Animal Distribution
5.
Evolution ; 76(9): 2004-2019, 2022 09.
Article in English | MEDLINE | ID: mdl-35778920

ABSTRACT

Discovery of cryptic species is essential to understand the process of speciation and assessing the impacts of anthropogenic stressors. Here, we used genomic data to test for cryptic species diversity within an ecologically well-known radiation of North American rodents, western chipmunks (Tamias). We assembled a de novo reference genome for a single species (Tamias minimus) combined with new and published targeted sequence-capture data for 21,551 autosomal and 493 X-linked loci sampled from 121 individuals spanning 22 species. We identified at least two cryptic lineages corresponding with an isolated subspecies of least chipmunk (T. minimus grisescens) and with a restricted subspecies of the yellow-pine chipmunk (Tamias amoenus cratericus) known only from around the extensive Craters of the Moon lava flow. Additional population-level sequence data revealed that the so-called Crater chipmunk is a distinct species that is abundant throughout the coniferous forests of southern Idaho. This cryptic lineage does not appear to be most closely related to the ecologically and phenotypically similar yellow-pine chipmunk but does show evidence for recurrent hybridization with this and other species.


Subject(s)
Hybridization, Genetic , Sciuridae , Animals , Genomics , Idaho , Microsatellite Repeats , Phylogeny , Sciuridae/genetics
6.
Syst Biol ; 70(5): 908-921, 2021 08 11.
Article in English | MEDLINE | ID: mdl-33410870

ABSTRACT

Evidence from natural systems suggests that hybridization between animal species is more common than traditionally thought, but the overall contribution of introgression to standing genetic variation within species remains unclear for most animal systems. Here, we use targeted exon capture to sequence thousands of nuclear loci and complete mitochondrial genomes from closely related chipmunk species in the Tamias quadrivittatus group that are distributed across the Great Basin and the central and southern Rocky Mountains of North America. This recent radiation includes six overlapping, ecologically distinct species (Tamias canipes, Tamias cinereicollis, Tamias dorsalis, T. quadrivittatus, Tamias rufus, and Tamias umbrinus) that show evidence for widespread introgression across species boundaries. Such evidence has historically been derived from a handful of markers, typically focused on mitochondrial loci, to describe patterns of introgression; consequently, the extent of introgression of nuclear genes is less well characterized. We conducted a series of phylogenomic and species-tree analyses to resolve the phylogeny of six species in this group. In addition, we performed several population-genomic analyses to characterize nuclear genomes and infer coancestry among individuals. Furthermore, we used emerging quartets-based approaches to simultaneously infer the species tree (SVDquartets) and identify introgression (HyDe). We found that, in spite of rampant introgression of mitochondrial genomes between some species pairs (and sometimes involving up to three species), there appears to be little to no evidence for nuclear introgression. These findings mirror other genomic results where complete mitochondrial capture has occurred between chipmunk species in the absence of appreciable nuclear gene flow. The underlying causes of recurrent massive cytonuclear discordance remain unresolved in this group but mitochondrial DNA appears highly misleading of population histories as a whole. Collectively, it appears that chipmunk species boundaries are largely impermeable to nuclear gene flow and that hybridization, while pervasive with respect to mtDNA, has likely played a relatively minor role in the evolutionary history of this group. [Cytonuclear discordance; hyridization; introgression, phylogenomics; SVDquartets; Tamias.].


Subject(s)
Genome, Mitochondrial , Sciuridae , Animals , DNA, Mitochondrial , Gene Flow , Humans , Phylogeny , Sciuridae/genetics
7.
Genetics ; 202(1): 273-83, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26546003

ABSTRACT

Protein expression level is one of the strongest predictors of protein sequence evolutionary rate, with high-expression protein sequences evolving at slower rates than low-expression protein sequences largely because of constraints on protein folding and function. Expression evolutionary rates also have been shown to be negatively correlated with expression level across human and mouse orthologs over relatively long divergence times (i.e., ∼100 million years). Long-term evolutionary patterns, however, often cannot be extrapolated to microevolutionary processes (and vice versa), and whether this relationship holds for traits evolving under directional selection within a single species over ecological timescales (i.e., <5000 years) is unknown and not necessarily expected. Expression is a metabolically costly process, and the expression level of a particular protein is predicted to be a tradeoff between the benefit of its function and the costs of its expression. Selection should drive the expression level of all proteins close to values that maximize fitness, particularly for high-expression proteins because of the increased energetic cost of production. Therefore, stabilizing selection may reduce the amount of standing expression variation for high-expression proteins, and in combination with physiological constraints that may place an upper bound on the range of beneficial expression variation, these constraints could severely limit the availability of beneficial expression variants. To determine whether rapid-expression evolution was restricted to low-expression proteins owing to these constraints on highly expressed proteins over ecological timescales, we compared venom protein expression levels across mainland and island populations for three species of pit vipers. We detected significant differentiation in protein expression levels in two of the three species and found that rapid-expression differentiation was restricted to low-expression proteins. Our results suggest that various constraints on high-expression proteins reduce the availability of beneficial expression variants relative to low-expression proteins, enabling low-expression proteins to evolve and potentially lead to more rapid adaptation.


Subject(s)
Ecosystem , Evolution, Molecular , Gene Expression , Proteins/genetics , Viperidae/genetics , Animals , Gene Expression Profiling , Islands , Sequence Analysis, DNA , Southeastern United States , Time
8.
Mol Phylogenet Evol ; 93: 94-106, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26234273

ABSTRACT

Reconstructing historical biogeography of the marine realm is complicated by indistinct barriers and, over deeper time scales, a dynamic landscape shaped by plate tectonics. Here we present the most extensive examination of model-based historical biogeography among marine invertebrates to date. We conducted the largest phylogenetic and molecular clock analyses to date for the bivalve family Cardiidae (cockles and giant clams) with three unlinked loci for 110 species representing 37 of the 50 genera. Ancestral ranges were reconstructed using the dispersal-extinction-cladogenesis (DEC) method with a time-stratified paleogeographic model wherein dispersal rates varied with shifting tectonics. Results were compared to previous classifications and the extensive paleontological record. Six of the eight prior subfamily groupings were found to be para- or polyphyletic. Cardiidae originated and subsequently diversified in the tropical Indo-Pacific starting in the Late Triassic. Eastern Atlantic species were mainly derived from the tropical Indo-Mediterranean region via the Tethys Sea. In contrast, the western Atlantic fauna was derived from Indo-Pacific clades. Our phylogenetic results demonstrated greater concordance with geography than did previous phylogenies based on morphology. Time-stratifying the DEC reconstruction improved the fit and was highly consistent with paleo-ocean currents and paleogeography. Lastly, combining molecular phylogenetics with a rich and well-documented fossil record allowed us to test the accuracy and precision of biogeographic range reconstructions.


Subject(s)
Cardiidae/genetics , Phylogeny , Phylogeography , Animals , Calibration , Likelihood Functions , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL