Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 397
Filter
1.
Cancer Discov ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975897

ABSTRACT

Resistance to inactive state-selective RASG12C inhibitors frequently entails accumulation of RASGTP, rendering effective inhibition of active RAS potentially desirable. Here, we evaluated the anti-tumor activity of the RAS(ON) multi-selective tri-complex inhibitor RMC-7977 and dissected mechanisms of response and tolerance in KRASG12C-mutant NSCLC. Broad-spectrum, reversible RASGTP inhibition with or without concurrent covalent targeting of active RASG12C yielded superior and differentiated antitumor activity across diverse co-mutational KRASG12C-mutant NSCLC mouse models of primary or acquired RASG12C(ON) or (OFF) inhibitor resistance. Interrogation of time-resolved single cell transcriptional responses established an in vivo atlas of multi-modal acute and chronic RAS pathway inhibition in the NSCLC ecosystem and uncovered a regenerative mucinous transcriptional program that supports long-term tumor cell persistence. In patients with advanced KRASG12C-mutant NSCLC, the presence of mucinous histological features portended poor response to sotorasib or adagrasib. Our results have potential implications for personalized medicine and the development of rational RAS inhibitor-anchored therapeutic strategies.

2.
Cancer Innov ; 3(3): e112, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38947760

ABSTRACT

Background: Pulmonary sarcomatoid carcinoma (PSC) is a rare and aggressive subtype of non-small cell lung cancer (NSCLC), characterized by the presence of epithelial and sarcoma-like components. The molecular and immune landscape of PSC has not been well defined. Methods: Multiomics profiling of 21 pairs of PSCs with matched normal lung tissues was performed through targeted high-depth DNA panel, whole-exome, and RNA sequencing. We describe molecular and immune features that define subgroups of PSC with disparate genomic and immunogenic features as well as distinct clinical outcomes. Results: In total, 27 canonical cancer gene mutations were identified, with TP53 the most frequently mutated gene, followed by KRAS. Interestingly, most TP53 and KRAS mutations were earlier genomic events mapped to the trunks of the tumors, suggesting branching evolution in most PSC tumors. We identified two distinct molecular subtypes of PSC, driven primarily by immune infiltration and signaling. The Immune High (IM-H) subtype was associated with superior survival, highlighting the impact of immune infiltration on the biological and clinical features of localized PSCs. Conclusions: We provided detailed insight into the mutational landscape of PSC and identified two molecular subtypes associated with prognosis. IM-H tumors were associated with favorable recurrence-free survival and overall survival, highlighting the importance of tumor immune infiltration in the biological and clinical features of PSCs.

3.
J Thorac Oncol ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38866326

ABSTRACT

BACKGROUND: Germline mutations driving lung cancer have been infrequently reported in literature, with EGFR T790M being a known germline mutation identified in 1% of NSCLC. Typically, a somatic EGFR mutation is acquired to develop lung adenocarcinoma. Osimertinib has become standard-of-care treatment for EGFR T790M-positive lung cancer. METHODS: We perform a retrospective analysis through the Lung Cancer Moon Shot GEMINI database at the UT MD Anderson Cancer Center. Of the patients that underwent cfDNA analysis, germline mutations were identified by those with high variant allelic fraction (VAF) approximating 50%, followed by further confirmation on genetic testing. RESULTS: We identified 22 patients with germline EGFR mutations, with the majority harboring an EGFR T790M mutation (95.5%) and EGFR L858R somatic mutation (50%). Notably, most patients were female (86.4%), non-smokers (81.8%), Caucasian (86.4%), have family history of lung cancer (59.1%), and stage IV at diagnosis (72.7%). A distinct radiographic pattern of small multifocal ground-glass pulmonary nodules was observed in the majority of our cohort (72.7%). Among the 18 with advanced-stage NSCLC, 12 (66.7%) were treated with first-line osimertinib, demonstrating a median PFS of 16.9 months (95% CI; 6.3-NR). Others were treated with first-line afatinib (11.1%) or chemotherapy (22.2%). Among the 17 patients treated with osimertinib (in first or second-line), mPFS was 20.4 months (95% CI; 6.3-NR) and mOS was 82.0 months (95% CI; 28.4-NR). CONCLUSION: Based on our institutional cohort, NSCLC driven by EGFR germline mutations occur more frequently in non-smoking, Caucasian females with multi-focal pulmonary nodules radiographically. Osimertinib for advanced germline EGFR-mutated NSCLC renders similar PFS compared to somatic T790M EGFR-mutated NSCLC.

4.
Mol Cancer ; 23(1): 115, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38811992

ABSTRACT

BACKGROUND: We explored potential predictive biomarkers of immunotherapy response in patients with extensive-stage small-cell lung cancer (ES-SCLC) treated with durvalumab (D) + tremelimumab (T) + etoposide-platinum (EP), D + EP, or EP in the randomized phase 3 CASPIAN trial. METHODS: 805 treatment-naïve patients with ES-SCLC were randomized (1:1:1) to receive D + T + EP, D + EP, or EP. The primary endpoint was overall survival (OS). Patients were required to provide an archived tumor tissue block (or ≥ 15 newly cut unstained slides) at screening, if these samples existed. After assessment for programmed cell death ligand-1 expression and tissue tumor mutational burden, residual tissue was used for additional molecular profiling including by RNA sequencing and immunohistochemistry. RESULTS: In 182 patients with transcriptional molecular subtyping, OS with D ± T + EP was numerically highest in the SCLC-inflamed subtype (n = 10, median 24.0 months). Patients derived benefit from immunotherapy across subtypes; thus, additional biomarkers were investigated. OS benefit with D ± T + EP versus EP was greater with high versus low CD8A expression/CD8 cell density by immunohistochemistry, but with no additional benefit with D + T + EP versus D + EP. OS benefit with D + T + EP versus D + EP was associated with high expression of CD4 (median 25.9 vs. 11.4 months) and antigen-presenting and processing machinery (25.9 vs. 14.6 months) and MHC I and II (23.6 vs. 17.3 months) gene signatures, and with higher MHC I expression by immunohistochemistry. CONCLUSIONS: These findings demonstrate the tumor microenvironment is important in mediating better outcomes with D ± T + EP in ES-SCLC, with canonical immune markers associated with hypothesized immunotherapy mechanisms of action defining patient subsets that respond to D ± T. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03043872.


Subject(s)
Biomarkers, Tumor , Immunotherapy , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/immunology , Small Cell Lung Carcinoma/therapy , Small Cell Lung Carcinoma/metabolism , Small Cell Lung Carcinoma/mortality , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/mortality , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/therapy , Lung Neoplasms/metabolism , Female , Male , Immunotherapy/methods , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Middle Aged , Aged , Antibodies, Monoclonal/therapeutic use , Treatment Outcome , Neoplasm Staging , Antibodies, Monoclonal, Humanized/therapeutic use , Prognosis , Adult
5.
Res Sq ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38798564

ABSTRACT

Studying lung adenocarcinoma (LUAD) early carcinogenesis is challenging, primarily due to the lack of LUAD precursors specimens. We amassed multi-omics data from 213 LUAD and LUAD precursors to identify molecular features underlying LUAD precancer evolution. We observed progressively increasing mutations, chromosomal aberrations, whole genome doubling and genomic instability from precancer to invasive LUAD, indicating aggravating chromosomal instability (CIN). Telomere shortening, a crucial genomic alteration linked to CIN, emerged at precancer stage. Moreover, later-stage lesions demonstrated increasing cancer stemness and decreasing alveolar identity, suggesting epithelial de-differentiation during early LUAD carcinogenesis. The innate immune cells progressively diminished from precancer to invasive LUAD, concomitant with a gradual recruitment of adaptive immune cells (except CD8+ and gamma-delta T cells that decreased in later stages) and upregulation of numerous immune checkpoints, suggesting LUAD precancer evolution is associated with a shift from innate to adaptive immune response and immune evasion mediated by various mechanisms.

6.
Cancers (Basel) ; 16(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38672668

ABSTRACT

The curative treatment of multiple solid tumors, including head and neck squamous cell carcinoma (HNSCC), utilizes radiation. The outcomes for HPV/p16-negative HNSCC are significantly worse than HPV/p16-positive tumors, with increased radiation resistance leading to worse locoregional recurrence (LRR) and ultimately death. This study analyzed the relationship between immune function and outcomes following radiation in HPV/p16-negative tumors to identify mechanisms of radiation resistance and prognostic immune biomarkers. A discovery cohort of 94 patients with HNSCC treated uniformly with surgery and adjuvant radiation and a validation cohort of 97 similarly treated patients were utilized. Tumor immune infiltrates were derived from RNAseq gene expression. The immune cell types significantly associated with outcomes in the discovery cohort were examined in the independent validation cohort. A positive association between high Th2 infiltration and LRR was identified in the discovery cohort and validated in the validation cohort. Tumor mutations in CREBBP/EP300 and CASP8 were significantly associated with Th2 infiltration. A pathway analysis of genes correlated with Th2 cells revealed the potential repression of the antitumor immune response and the activation of BRCA1-associated DNA damage repair in multiple cohorts. The Th2 infiltrates were enriched in the HPV/p16-negative HNSCC tumors and associated with LRR and mutations in CASP8, CREBBP/EP300, and pathways previously shown to impact the response to radiation.

7.
Front Oncol ; 14: 1324057, 2024.
Article in English | MEDLINE | ID: mdl-38590653

ABSTRACT

Accurate diagnoses are crucial in determining the most effective treatment across different cancers. In challenging cases, morphology-based traditional pathology methods have important limitations, while molecular profiling can provide valuable information to guide clinical decisions. We present a 35-year female with lung cancer with choriocarcinoma features. Her disease involved the right lower lung, brain, and thoracic lymph nodes. The pathology from brain metastasis was reported as "metastatic choriocarcinoma" (a germ cell tumor) by local pathologists. She initiated carboplatin and etoposide, a regimen for choriocarcinoma. Subsequently, her case was assessed by pathologists from an academic cancer center, who gave the diagnosis of "adenocarcinoma with aberrant expression of ß-hCG" and finally pathologists at our hospital, who gave the diagnosis of "poorly differentiated carcinoma with choriocarcinoma features". Genomic profiling detected a KRAS G13R mutation and transcriptomics profiling was suggestive of lung origin. The patient was treated with carboplatin/paclitaxel/ipilimumab/nivolumab followed by consolidation radiation therapy. She had no evidence of progression to date, 16 months after the initial presentation. The molecular profiling could facilitate diagnosing of challenging cancer cases. In addition, chemoimmunotherapy and local consolidation radiation therapy may provide promising therapeutic options for patients with lung cancer exhibiting choriocarcinoma features.

8.
EBioMedicine ; 102: 105062, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38492534

ABSTRACT

BACKGROUND: Recent studies have reported the predictive and prognostic value of novel transcriptional factor-based molecular subtypes in small-cell lung cancer (SCLC). We conducted an in-depth analysis pairing multi-omics data with immunohistochemistry (IHC) to elucidate the underlying characteristics associated with differences in clinical outcomes between subtypes. METHODS: IHC (n = 252), target exome sequencing (n = 422), and whole transcriptome sequencing (WTS, n = 189) data generated from 427 patients (86.4% males, 13.6% females) with SCLC were comprehensively analysed. The differences in the mutation profile, gene expression profile, and inflammed signatures were analysed according to the IHC-based molecular subtype. FINDINGS: IHC-based molecular subtyping, comprised of 90 limited-disease (35.7%) and 162 extensive-disease (64.3%), revealed a high incidence of ASCL1 subtype (IHC-A, 56.3%) followed by ASCL1/NEUROD1 co-expressed (IHC-AN, 17.9%), NEUROD1 (IHC-N, 12.3%), POU2F3 (IHC-P, 9.1%), triple-negative (IHC-TN, 4.4%) subtypes. IHC-based subtype showing high concordance with WTS-based subtyping and non-negative matrix factorization (NMF) clusterization method. IHC-AN subtype resembled IHC-A (rather than IHC-N) in terms of both gene expression profiles and clinical outcomes. Favourable median overall survival was observed in IHC-A (15.2 months) compared to IHC-N (8.0 months, adjusted HR 2.3, 95% CI 1.4-3.9, p = 0.002) and IHC-P (8.3 months, adjusted HR 1.7, 95% CI 0.9-3.2, p = 0.076). Inflamed tumours made up 25% of cases (including 53% of IHC-P, 26% of IHC-A, 17% of IHC-AN, but only 11% of IHC-N). Consistent with recent findings, inflamed tumours were more likely to benefit from first-line immunotherapy treatment than non-inflamed phenotype (p = 0.002). INTERPRETATION: This study provides fundamental data, including the incidence and basic demographics of molecular subtypes of SCLC using both IHC and WTS from a comparably large, real-world Asian/non-Western patient cohort, showing high concordance with the previous NMF-based SCLC model. In addition, we revealed underlying biological pathway activities, immunogenicity, and treatment outcomes based on molecular subtype, possibly related to the difference in clinical outcomes, including immunotherapy response. FUNDING: This work was supported by AstraZeneca, Future Medicine 2030 Project of the Samsung Medical Center [grant number SMX1240011], the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) [grant number 2020R1C1C1010626] and the 7th AstraZeneca-KHIDI (Korea Health Industry Development Institute) oncology research program.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Male , Female , Humans , Transcription Factors/genetics , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/therapy , Prognosis
10.
Cell Rep Med ; 5(3): 101463, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38471502

ABSTRACT

[18F]Fluorodeoxyglucose positron emission tomography (FDG-PET) and computed tomography (CT) are indispensable components in modern medicine. Although PET can provide additional diagnostic value, it is costly and not universally accessible, particularly in low-income countries. To bridge this gap, we have developed a conditional generative adversarial network pipeline that can produce FDG-PET from diagnostic CT scans based on multi-center multi-modal lung cancer datasets (n = 1,478). Synthetic PET images are validated across imaging, biological, and clinical aspects. Radiologists confirm comparable imaging quality and tumor contrast between synthetic and actual PET scans. Radiogenomics analysis further proves that the dysregulated cancer hallmark pathways of synthetic PET are consistent with actual PET. We also demonstrate the clinical values of synthetic PET in improving lung cancer diagnosis, staging, risk prediction, and prognosis. Taken together, this proof-of-concept study testifies to the feasibility of applying deep learning to obtain high-fidelity PET translated from CT.


Subject(s)
Lung Neoplasms , Positron Emission Tomography Computed Tomography , Humans , Positron Emission Tomography Computed Tomography/methods , Fluorodeoxyglucose F18 , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/genetics , Tomography, X-Ray Computed , Prognosis
11.
Cancers (Basel) ; 16(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38473297

ABSTRACT

Docetaxel +/- ramucirumab remains the standard-of-care therapy for patients with metastatic non-small-cell lung cancer (NSCLC) after progression on platinum doublets and immune checkpoint inhibitors (ICIs). The aim of our study was to investigate whether the cancer gene mutation status was associated with clinical benefits from docetaxel +/- ramucirumab. We also investigated whether platinum/taxane-based regimens offered a better clinical benefit in this patient population. A total of 454 patients were analyzed (docetaxel +/- ramucirumab n=381; platinum/taxane-based regimens n=73). Progression-free survival (PFS) and overall survival (OS) were compared among different subpopulations with different cancer gene mutations and between patients who received docetaxel +/- ramucirumab versus platinum/taxane-based regimens. Among patients who received docetaxel +/- ramucirumab, the top mutated cancer genes included TP53 (n=167), KRAS (n=127), EGFR (n=65), STK11 (n=32), ERBB2 (HER2) (n=26), etc. None of these cancer gene mutations or PD-L1 expression was associated with PFS or OS. Platinum/taxane-based regimens were associated with a significantly longer mQS (13.00 m, 95% Cl: 11.20-14.80 m versus 8.40 m, 95% Cl: 7.12-9.68 m, LogRank P=0.019) than docetaxel +/- ramcirumab. Key prognostic factors including age, histology, and performance status were not different between these two groups. In conclusion, in patients with metastatic NSCLC who have progressed on platinum doublets and ICIs, the clinical benefit from docetaxel +/- ramucirumab is not associated with the cancer gene mutation status. Platinum/taxane-based regimens may offer a superior clinical benefit over docetaxel +/- ramucirumab in this patient population.

12.
Radiother Oncol ; 193: 110121, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38311031

ABSTRACT

INTRODUCTION: Adjuvant immunotherapy (IO) following concurrent chemotherapy and photon radiation therapy confers an overall survival (OS) benefit for patients with inoperable locally advanced non-small cell lung carcinoma (LA-NSCLC); however, outcomes of adjuvant IO after concurrent chemotherapy with proton beam therapy (CPBT) are unknown. We investigated OS and toxicity after CPBT with adjuvant IO versus CPBT alone for inoperable LA-NSCLC. MATERIALS AND METHODS: We analyzed 354 patients with LA-NSCLC who were prospectively treated with CPBT with or without adjuvant IO from 2009 to 2021. Optimal variable ratio propensity score matching (PSM) matched CPBT with CPBT + IO patients. Survival was estimated with the Kaplan-Meier method and compared with log-rank tests. Multivariable Cox proportional hazards regression evaluated the effect of IO on disease outcomes. RESULTS: Median age was 70 years; 71 (20%) received CPBT + IO and 283 (80%) received CPBT only. After PSM, 71 CPBT patients were matched with 71 CPBT + IO patients. Three-year survival rates for CPBT + IO vs CPBT were: OS 67% vs 30% (P < 0.001) and PFS 59% vs 35% (P = 0.017). Three-year LRFS (P = 0.137) and DMFS (P = 0.086) did not differ. Receipt of adjuvant IO was a strong predictor of OS (HR 0.40, P = 0.001) and PFS (HR 0.56, P = 0.030), but not LRFS (HR 0.61, P = 0.121) or DMFS (HR 0.61, P = 0.136). There was an increased incidence of grade ≥3 esophagitis in the CPBT-only group (6% CPBT + IO vs 17% CPBT, P = 0.037). CONCLUSION: This study, one of the first to investigate CPBT followed by IO for inoperable LA-NSCLC, showed that IO conferred survival benefits with no increased rates of toxicity.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Proton Therapy , Humans , Aged , Carcinoma, Non-Small-Cell Lung/pathology , Proton Therapy/adverse effects , Chemotherapy, Adjuvant , Lung Neoplasms/pathology , Immunotherapy/adverse effects , Retrospective Studies
13.
JTO Clin Res Rep ; 5(2): 100623, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38357092

ABSTRACT

Introduction: NSCLC transformation to SCLC has been best characterized with EGFR-mutant NSCLC, with emerging case reports seen in ALK, RET, and KRAS-altered NSCLC. Previous reports revealed transformed SCLC from EGFR-mutant NSCLC portends very poor prognosis and lack effective treatment. Genomic analyses revealed TP53 and RB1 loss of function increase the risk of SCLC transformation. Little has been reported on the detailed clinicogenomic characteristics and potential therapeutic targets for this patient population. Methods: In this study, we conducted a single-center retrospective analysis of clinical and genomic characteristics of patients with EGFR-mutant NSCLC transformed to SCLC. Demographic data, treatment course, and clinical molecular testing reports were extracted from electronic medical records. Kaplan-Meier analyses were used to estimate survival outcomes. Next generation sequencing-based assays was used to identify EGFR and co-occurring genetic alterations in tissue or plasma before and after SCLC transformation. Single-cell RNA sequencing (scRNA-seq) was performed on a patient-derived-xenograft model generated from a patient with EGFR-NSCLC transformed SCLC tumor. Results: A total of 34 patients were identified in our study. Median age at initial diagnosis was 58, and median time to SCLC transformation was 24.2 months. 68% were female and 82% were never smokers. 79% of patients were diagnosed as stage IV disease, and over half had brain metastases at baseline. Median overall survival of the entire cohort was 38.3 months from initial diagnoses and 12.4 months from time of SCLC transformation. Most patients harbored EGFR exon19 deletions as opposed to exon21 L858R alteration. Continuing EGFR tyrosine kinase inhibitor post-transformation did not improve overall survival compared with those patients where tyrosine kinase inhibitor was stopped in our cohort. In the 20 paired pretransformed and post-transformed patient samples, statistically significant enrichment was seen with PIK3CA alterations (p = 0.04) post-transformation. Profiling of longitudinal liquid biopsy samples suggest emergence of SCLC genetic alterations before biopsy-proven SCLC, as shown by increasing variant allele frequency of TP53, RB1, PIK3CA alterations. ScRNA-seq revealed potential therapeutic targets including DLL3, CD276 (B7-H3) and PTK7 were widely expressed in transformed SCLC. Conclusions: SCLC transformation is a potential treatment resistance mechanism in driver-mutant NSCLC. In our cohort of 34 EGFR-mutant NSCLC, poor prognosis was observed after SCLC transformation. Clinicogenomic analyses of paired and longitudinal samples identified genomic alterations emerging post-transformation and scRNA-seq reveal potential therapeutic targets in this population. Further studies are needed to rigorously validate biomarkers and therapeutic targets for this patient population.

14.
Nat Med ; 30(3): 716-729, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38351187

ABSTRACT

For patients with non-small-cell lung cancer (NSCLC) tumors without currently targetable molecular alterations, standard-of-care treatment is immunotherapy with anti-PD-(L)1 checkpoint inhibitors, alone or with platinum-doublet therapy. However, not all patients derive durable benefit and resistance to immune checkpoint blockade is common. Understanding mechanisms of resistance-which can include defects in DNA damage response and repair pathways, alterations or functional mutations in STK11/LKB1, alterations in antigen-presentation pathways, and immunosuppressive cellular subsets within the tumor microenvironment-and developing effective therapies to overcome them, remains an unmet need. Here the phase 2 umbrella HUDSON study evaluated rational combination regimens for advanced NSCLC following failure of anti-PD-(L)1-containing immunotherapy and platinum-doublet therapy. A total of 268 patients received durvalumab (anti-PD-L1 monoclonal antibody)-ceralasertib (ATR kinase inhibitor), durvalumab-olaparib (PARP inhibitor), durvalumab-danvatirsen (STAT3 antisense oligonucleotide) or durvalumab-oleclumab (anti-CD73 monoclonal antibody). Greatest clinical benefit was observed with durvalumab-ceralasertib; objective response rate (primary outcome) was 13.9% (11/79) versus 2.6% (5/189) with other regimens, pooled, median progression-free survival (secondary outcome) was 5.8 (80% confidence interval 4.6-7.4) versus 2.7 (1.8-2.8) months, and median overall survival (secondary outcome) was 17.4 (14.1-20.3) versus 9.4 (7.5-10.6) months. Benefit with durvalumab-ceralasertib was consistent across known immunotherapy-refractory subgroups. In ATM-altered patients hypothesized to harbor vulnerability to ATR inhibition, objective response rate was 26.1% (6/23) and median progression-free survival/median overall survival were 8.4/22.8 months. Durvalumab-ceralasertib safety/tolerability profile was manageable. Biomarker analyses suggested that anti-PD-L1/ATR inhibition induced immune changes that reinvigorated antitumor immunity. Durvalumab-ceralasertib is under further investigation in immunotherapy-refractory NSCLC.ClinicalTrials.gov identifier: NCT03334617.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Indoles , Lung Neoplasms , Morpholines , Pyrimidines , Sulfonamides , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Platinum/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antibodies, Monoclonal , Antineoplastic Agents/therapeutic use , Biomarkers , B7-H1 Antigen , Tumor Microenvironment
15.
Cancer Cell ; 42(3): 429-443.e4, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38366589

ABSTRACT

Atezolizumab (anti-PD-L1), combined with carboplatin and etoposide (CE), is now a standard of care for extensive-stage small-cell lung cancer (ES-SCLC). A clearer understanding of therapeutically relevant SCLC subsets could identify rational combination strategies and improve outcomes. We conduct transcriptomic analyses and non-negative matrix factorization on 271 pre-treatment patient tumor samples from IMpower133 and identify four subsets with general concordance to previously reported SCLC subtypes (SCLC-A, -N, -P, and -I). Deeper investigation into the immune heterogeneity uncovers two subsets with differing neuroendocrine (NE) versus non-neuroendocrine (non-NE) phenotypes, demonstrating immune cell infiltration hallmarks. The NE tumors with low tumor-associated macrophage (TAM) but high T-effector signals demonstrate longer overall survival with PD-L1 blockade and CE versus CE alone than non-NE tumors with high TAM and high T-effector signal. Our study offers a clinically relevant approach to discriminate SCLC patients likely benefitting most from immunotherapies and highlights the complex mechanisms underlying immunotherapy responses.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Lung Neoplasms/genetics , Immune Checkpoint Inhibitors/therapeutic use , Small Cell Lung Carcinoma/genetics , Carboplatin/therapeutic use , Etoposide/therapeutic use , Immunotherapy
16.
Nature ; 627(8004): 656-663, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38418883

ABSTRACT

Understanding the cellular processes that underlie early lung adenocarcinoma (LUAD) development is needed to devise intervention strategies1. Here we studied 246,102 single epithelial cells from 16 early-stage LUADs and 47 matched normal lung samples. Epithelial cells comprised diverse normal and cancer cell states, and diversity among cancer cells was strongly linked to LUAD-specific oncogenic drivers. KRAS mutant cancer cells showed distinct transcriptional features, reduced differentiation and low levels of aneuploidy. Non-malignant areas surrounding human LUAD samples were enriched with alveolar intermediate cells that displayed elevated KRT8 expression (termed KRT8+ alveolar intermediate cells (KACs) here), reduced differentiation, increased plasticity and driver KRAS mutations. Expression profiles of KACs were enriched in lung precancer cells and in LUAD cells and signified poor survival. In mice exposed to tobacco carcinogen, KACs emerged before lung tumours and persisted for months after cessation of carcinogen exposure. Moreover, they acquired Kras mutations and conveyed sensitivity to targeted KRAS inhibition in KAC-enriched organoids derived from alveolar type 2 (AT2) cells. Last, lineage-labelling of AT2 cells or KRT8+ cells following carcinogen exposure showed that KACs are possible intermediates in AT2-to-tumour cell transformation. This study provides new insights into epithelial cell states at the root of LUAD development, and such states could harbour potential targets for prevention or intervention.


Subject(s)
Adenocarcinoma of Lung , Cell Differentiation , Epithelial Cells , Lung Neoplasms , Animals , Humans , Mice , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Aneuploidy , Carcinogens/toxicity , Epithelial Cells/classification , Epithelial Cells/metabolism , Epithelial Cells/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Organoids/drug effects , Organoids/metabolism , Precancerous Conditions/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Survival Rate , Tobacco Products/adverse effects , Tobacco Products/toxicity
18.
Cancer Cell ; 42(2): 225-237.e5, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38278149

ABSTRACT

Small cell lung cancer (SCLC) is an aggressive malignancy composed of distinct transcriptional subtypes, but implementing subtyping in the clinic has remained challenging, particularly due to limited tissue availability. Given the known epigenetic regulation of critical SCLC transcriptional programs, we hypothesized that subtype-specific patterns of DNA methylation could be detected in tumor or blood from SCLC patients. Using genomic-wide reduced-representation bisulfite sequencing (RRBS) in two cohorts totaling 179 SCLC patients and using machine learning approaches, we report a highly accurate DNA methylation-based classifier (SCLC-DMC) that can distinguish SCLC subtypes. We further adjust the classifier for circulating-free DNA (cfDNA) to subtype SCLC from plasma. Using the cfDNA classifier (cfDMC), we demonstrate that SCLC phenotypes can evolve during disease progression, highlighting the need for longitudinal tracking of SCLC during clinical treatment. These data establish that tumor and cfDNA methylation can be used to identify SCLC subtypes and might guide precision SCLC therapy.


Subject(s)
Cell-Free Nucleic Acids , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , DNA Methylation , Cell-Free Nucleic Acids/genetics , Epigenesis, Genetic , Biomarkers, Tumor/genetics
19.
J Thorac Oncol ; 19(1): 106-118, 2024 01.
Article in English | MEDLINE | ID: mdl-37678511

ABSTRACT

INTRODUCTION: NRG1 gene fusions are clinically actionable alterations identified in NSCLC and other tumors. Previous studies have reported that NRG1 fusions signal through HER2 and HER3 but, thus far, strategies targeting HER3 specifically or HER2-HER3 signaling have exhibited modest activity in patients with NSCLC bearing NRG1 fusions. Although NRG1 fusion proteins can bind HER4 in addition to HER3, the contribution of HER4 and other HER family members in NRG1 fusion-positive cancers is not fully understood. METHODS: We investigated the role of HER4 and EGFR-HER3 signaling in NRG1 fusion-positive cancers using Ba/F3 models engineered to express various HER family members in combination with NRG1 fusions and in vitro and in vivo models of NRG1 fusion-positive cancer. RESULTS: We determined that NRG1 fusions can stimulate downstream signaling and tumor cell growth through HER4, independent of other HER family members. Moreover, EGFR-HER3 signaling is also activated in cells expressing NRG1 fusions, and inhibition of these receptors is also necessary to effectively inhibit tumor cell growth. We observed that cetuximab, an anti-EGFR antibody, in combination with anti-HER2 antibodies, trastuzumab and pertuzumab, yielded a synergistic effect. Furthermore, pan-HER tyrosine kinase inhibitors were more effective than tyrosine kinase inhibitors with greater specificity for EGFR, EGFR-HER2, or HER2-HER4, although the relative degree of dependence on EGFR or HER4 signaling varied between different NRG1 fusion-positive cancers. CONCLUSIONS: Our findings indicate that pan-HER inhibition including HER4 and EGFR blockade is more effective than selectively targeting HER3 or HER2-HER3 in NRG1 fusion-positive cancers.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , ErbB Receptors/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Neuregulin-1/genetics , Neuregulin-1/metabolism , Receptor, ErbB-2 , Receptor, ErbB-3/genetics , Receptor, ErbB-3/metabolism , Signal Transduction
20.
Cancer Epidemiol Biomarkers Prev ; 33(1): 158-169, 2024 01 09.
Article in English | MEDLINE | ID: mdl-37943166

ABSTRACT

BACKGROUND: KRAS is among the most commonly mutated oncogenes in cancer, and previous studies have shown associations with survival in many cancer contexts. Evidence from both clinical observations and mouse experiments further suggests that these associations are allele- and tissue-specific. These findings motivate using clinical data to understand gene interactions and clinical covariates within different alleles and tissues. METHODS: We analyze genomic and clinical data from the AACR Project GENIE Biopharma Collaborative for samples from lung, colorectal, and pancreatic cancers. For each of these cancer types, we report epidemiological associations for different KRAS alleles, apply principal component analysis (PCA) to discover groups of genes co-mutated with KRAS, and identify distinct clusters of patient profiles with implications for survival. RESULTS: KRAS mutations were associated with inferior survival in lung, colon, and pancreas, although the specific mutations implicated varied by disease. Tissue- and allele-specific associations with smoking, sex, age, and race were found. Tissue-specific genetic interactions with KRAS were identified by PCA, which were clustered to produce five, four, and two patient profiles in lung, colon, and pancreas. Membership in these profiles was associated with survival in all three cancer types. CONCLUSIONS: KRAS mutations have tissue- and allele-specific associations with inferior survival, clinical covariates, and genetic interactions. IMPACT: Our results provide greater insight into the tissue- and allele-specific associations with KRAS mutations and identify clusters of patients that are associated with survival and clinical attributes from combinations of genetic interactions with KRAS mutations.


Subject(s)
Lung Neoplasms , Pancreatic Neoplasms , Animals , Humans , Lung , Lung Neoplasms/genetics , Mutation , Pancreas , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...