Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Sport Health Sci ; : 100985, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39251186

ABSTRACT

BACKGROUND: Trunk lean angle is an underrepresented biomechanical variable for modulating and redistributing lower extremity joint loading and potentially reducing the risk of running-related overuse injuries. The purpose of this study was to systematically alter the trunk lean angle in distance running using an auditory real-time feedback approach and to derive dose-response relationships between sagittal plane trunk lean angle and lower extremity (cumulative) joint loading to guide overuse load management in clinical practice. METHODS: Thirty recreational runners (15 males and 15 females) ran at a constant speed of 2.5 m/s at 5 systematically varied trunk lean conditions on a force-instrumented treadmill while kinematic and kinetic data were captured. RESULTS: A change in trunk lean angle from -2° (extension) to 28° (flexion) resulted in a systematic increase in stance phase angular impulse, cumulative impulse, and peak moment at the hip joint in the sagittal and transversal plane. In contrast, a systematic decrease in these parameters at the knee joint in the sagittal plane and the hip joint in the frontal plane was found (p < 0.001). Linear fitting revealed that with every degree of anterior trunk leaning, the cumulative hip joint extension loading increases by 3.26 Nm·s/kg/1000 m, while simultaneously decreasing knee joint extension loading by 1.08 Nm·s/kg/1000 m. CONCLUSION: Trunk leaning can reduce knee joint loading and hip joint abduction loading, at the cost of hip joint loading in the sagittal and transversal planes during distance running. Modulating lower extremity joint loading by altering trunk lean angle is an effective strategy to redistribute joint load between/within the knee and hip joints. When implementing anterior trunk leaning in clinical practice, the increased demands on the hip musculature, dynamic stability, and the potential trade-off with running economy should be considered.

2.
J Sci Med Sport ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39030083

ABSTRACT

OBJECTIVES: We aimed to investigate the effects of ankle taping on lower extremity biomechanics related to injury development and how these effects change after sports-specific use. DESIGN: Randomized, repeated measures design with three conditions: Barefoot, tape applied fresh, and tape after sports-specific use (between-subject factor: sex). METHODS: Twenty-five healthy participants (ten female) performed sports-specific movements, including running, drop jumping, and 180° change of direction, under the three conditions. Kinetic and kinematic data were collected using 3D motion capturing and force platforms. RESULTS: Tape applied fresh and tape after sports-specific use significantly reduced peak ankle inversion. Biomechanical risk factors for anterior cruciate ligament or running overuse injuries were either unchanged or decreased with tape applied fresh, except for the peak loading rate of the resultant ground reaction force, which increased between 4% and 18% between movement types. After 15 minutes of sports-specific use of the tape, the alterations induced by tape applied fresh remained for some biomechanical risk factors while they became closer to barefoot again for others, indicating a differential response to prolonged use of taping for different biomechanical variables. CONCLUSIONS: Ankle taping protects the ankle joint by reducing biomechanical risk factors associated with ankle sprains, and most biomechanical risk factors for anterior cruciate ligament or running overuse injuries are not increased. Further research is needed to explore the duration of protective effects, variations across sports, and its impact on patients with chronic ankle instability, contributing to a more comprehensive understanding of ankle taping's influence on lower extremity biomechanics.

3.
Sports Med Open ; 10(1): 14, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38332220

ABSTRACT

Advanced footwear technology (AFT) is currently being debated in sports. There is a direct evidence that distance running in AFT improves running economy. In addition, there is indirect evidence from competition performance for improved running performance from using AFTs in middle- and long-distance running and sprinting events. However, the extent to which world-class performance is affected across the full range of track and road racing events between genders has not been systematically analyzed. This study examined publicly available performance datasets of annual best track and road performances for evidence of potential systematic performance effects following the introduction of AFT. The analysis was based on the 100 best performances per year for men and women in outdoor events from 2010 to 2022, provided by the world governing body of athletics (World Athletics). We found evidence of progressing improvements in track and road running performances after the introduction of AFT for road races in 2016 and AFT for track racing in 2019. This evidence is more pronounced for distances longer than 1500 m in women and longer than 5000 m in men. Women seem to benefit more from AFT in distance running events than men. For the sprint events (100 m to 400 m hurdles), the peak performance gains in 2021 and 2022 compared to the pre-AFT period ranged from 0.6 to 1.1% and from 0.4 to 0.7% for women and men, respectively. For middle-distance events (400 m to 3000 m steeplechase), peak performance gains ranged from 0.6 to 1.9% and from 0.6 to 0.7% for women and men, respectively. For distances from 5000 m to the marathon, performance gains ranged from 2.2% to 3.5% and 0.7% to 1.4% for women and men, respectively. While the observational study design limits causal inference, this study provides a database on potential systematic performance effects after introducing advanced shoes/spikes in track and road running events in world-class athletes. Further research is needed to examine the underlying mechanisms and, in particular, potential gender differences in the performance effects of AFT.

SELECTION OF CITATIONS
SEARCH DETAIL