Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 708
Filter
1.
J Agric Food Chem ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39248834

ABSTRACT

In this paper, an in-depth study on Fraxinus mandshurica (FM) was conducted, focusing on the chemical constituents, in vitro and in vivo antioxidant activities of flavonoids, acute oral toxicity testing, network pharmacology, and molecular docking in the leaves of FM. The in vitro antioxidant results revealed that the total flavonoid extract (TFE), kaempferol, quercetin, and rutin exhibited similar antioxidant activities, with TFE demonstrating significantly better scavenging ability against hydroxyl radical compared to the other flavonoids. Moreover, in vivo antioxidant findings indicated that TFE led to a significant increase in glutathione peroxidase and superoxide dismutase activities along with a decrease in malondialdehyde levels in the liver tissues of mice in an ethanol-induced oxidative stress model, outperforming quercetin. The acute oral toxicity test established 5000 mg/kg of bw as the LD50 for TFE in rats. Through network pharmacological analysis, it was observed that all seven flavonoids in FM exhibited spontaneous binding to their respective key targets, reinforcing their potential antioxidant properties. Consequently, based on the experimental outcomes, TFE appears to be a safe and promising antioxidant source, indicating its potential as a new natural antioxidant resource.

2.
Food Funct ; 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39240213

ABSTRACT

Soy isoflavones from soy sauce residues have important biological activities. However, the anti-aging and reproduction-promoting effects of glycitein are still rarely reported. Here, we systematically evaluated and explored the anti-aging and reproduction-promoting effects of glycitein in Caenorhabditis elegans (C. elegans). Firstly, we analyzed the effects of glycitein on the lifespan under normal and heat stress, reproduction, locomotion, and reactive oxygen species (ROS) levels of C. elegans. The results showed that 100 µmol L-1 glycitein increased the anti-stress ability of nematodes and activated the antioxidant defense system. Secondly, transcriptomic and proteomic technologies were further used to explore in-depth the anti-aging and reproduction-promoting mechanisms of glycitein in C. elegans. The results showed that both differentially expressed proteins (DEPs) including PDE-2 and MSRA-1 and differentially expressed genes (DEGs) including skpo-2 and cytochrome P450 (cyp-35A3, cyp-35A5, cyp-35C1, cyp-35D1) were associated with the extension of the lifespan and the exertion of antioxidant capacity. VIT-1, plx-2, and Y73F8A.35 were related to promoting reproduction. ASP-1, DNJ-10, and abu-1 were related to the anti-stress ability of glycitein. Pathway analysis revealed that the longevity regulation pathway and FOXO signaling pathway were regulated by the changes in genes and proteins to improve the lifespan of the nematode. Moreover, hydrogenase regulation, longevity regulation, and lipid metabolism were regulated by the changes in genes and proteins to promote the reproduction of nematodes. This study not only demonstrates a viable strategy for utilizing soy sauce residues, but also provides a theoretical foundation and developmental insights for the future application of glycitein.

3.
Food Res Int ; 194: 114881, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39232554

ABSTRACT

A novel gradient-temperature heating regime was proposed to improve the texture of braised pork. Compared with one-stage pressure heat treatment of around 107 °C, the gradient-temperature heat regime of preheating at 60 °C, followed by a slow increase of temperature to 107 °C and simmering at 97 °C increased the retention of immobilized water and reduced the shear force of meat. In this cooking regime, preheating treatment at 50-60 °C could promote the dissociation of thin and thick myofilaments, which contributed to a weakened shrinkage of myofibrils during the subsequent high temperature heating process. Pressure-heating treatment with a slow increasing temperature and the medium-temperature simmering significantly reduced (p < 0.05) the oxidation of sulfhydryl groups and the loss of α-helical, which weakened the excessive aggregation of protein and promoted the formation of myofibril network. Both the weakened shrinkage and the formation of myofibril network during gradient-temperature heating contributed to the decreased shear force and an increased immobilized water. Hence, the reduction of the oxidation and aggregation of the proteins is the key to improve the tenderness of the braised meat.


Subject(s)
Cooking , Hot Temperature , Animals , Cooking/methods , Swine , Myofibrils/chemistry , Oxidation-Reduction , Water/chemistry , Pork Meat/analysis , Shear Strength , Food Handling/methods
4.
J Food Sci ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39175174

ABSTRACT

The complex composition of braised pork, including lean meat, pigskin, and fat, makes it difficult for sensory evaluation of its texture properties. This study investigated the correlation between sensory texture attributes and physicochemical properties to achieve an objective and comprehensive evaluation of the texture of braised pork. Sensory analysis demonstrated that the overall texture acceptability of braised pork was significantly and negatively influenced by sensory texture attributes (including sensory hardness, chewiness, and toughness), while it was positively impacted by sensory adhesiveness, softness, and juiciness. Shear force and texture profile analysis (TPA) variables, reflecting mastication behavior, were used to characterize the textural properties of braised pork. They were closely related to water distribution, with a higher proportion of immobilized water (P21), indicating a higher water holding capacity and a more tender texture. Correlation analysis between sensory texture attributes and physicochemical properties through partial least squares regression further revealed significant associations between shear force, TPA variables, and sensory texture attributes. Moreover, the proportion of immobilized water (P21) significantly and negatively affected sensory hardness and chewiness, whereas the proportion of free water (P22) significantly influenced sensory toughness. Sensory texture attributes could be well predicted by the physicochemical properties by projecting test samples onto calibration models established by known samples. Therefore, a combination of sensory and instrumental measures can reliably reflect the texture properties of braised pork. PRACTICAL APPLICATION: The combination of sensory and instrumental methods is an effective strategy to accurately and objectively evaluate the texture properties of braised pork, which overcomes the limitations caused by the complexity of the composition and texture traits of braised pork. The accurate evaluation and standardization of texture properties is an important premise for the repeatable and stable cooking of traditional braised pork. Furthermore, this research method and findings can also be applied to guide the procedural optimization of smart appliances (e.g., induction cookers) for cooking braised pork.

5.
J Agric Food Chem ; 72(33): 18489-18496, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39106077

ABSTRACT

Intestinal barrier hemostasis is the key to health. As a resveratrol analogue, pterostilbene (PT) has been reported to prevent dextran sodium sulfate (DSS)-induced intestinal barrier dysfunction mainly associated with the intestinal NF-κB signaling pathway. However, the exact underlying mechanisms are not yet well-defined yet. In this study, we performed RNA-sequencing analysis and unexpectedly found that alarmin S100A8 sensitively responded to DSS-induced intestinal injury. Accordingly, histologic assessments suggested that the high expression of S100A8 was accompanied by increased intestinal infiltration of macrophages, upregulated intestinal epithelial Toll-like receptor 4 (TLR-4), and activated NF-κB signaling pathway. Interestingly, the above phenomena were effectively counteracted upon the addition of PT. Furthermore, by using a coculture system of macrophage THP-1 cells and HT-29 colon cells, we identified macrophage-secreted S100A8 activated intestinal epithelial NF-κB signaling pathway through TLR-4. Taken together, these findings suggested that PT ameliorated DSS-induced intestinal barrier injury through suppression of the macrophage S100A8-intestinal epithelial TLR-4-NF-κB signaling cascade.


Subject(s)
Calgranulin A , Dextran Sulfate , Intestinal Mucosa , Mice, Inbred C57BL , NF-kappa B , Signal Transduction , Stilbenes , Toll-Like Receptor 4 , Dextran Sulfate/adverse effects , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Animals , Signal Transduction/drug effects , Humans , Mice , Calgranulin A/genetics , Calgranulin A/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Stilbenes/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Male , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Colitis/genetics
6.
Nutr Diabetes ; 14(1): 65, 2024 08 16.
Article in English | MEDLINE | ID: mdl-39152116

ABSTRACT

BACKGROUND: Diet and gut microbiota contribute to non-alcoholic steatohepatitis (NASH) progression. High-fat diets (HFDs) change gut microbiota compositions, induce gut dysbiosis, and intestinal barrier leakage, which facilitates portal influx of pathogen-associated molecular patterns including lipopolysaccharides (LPS) to the liver and triggers inflammation in NASH. Current therapeutic drugs for NASH have adverse side effects; however, several foods and herbs that exhibit hepatoprotection could be an alternative method to prevent NASH. METHODS: We investigated ginger essential oil (GEO) against palm oil-containing HFDs in LPS-injected murine NASH model. RESULTS: GEO reduced plasma alanine aminotransferase levels and hepatic pro-inflammatory cytokine levels; and increased antioxidant catalase, glutathione reductase, and glutathione levels to prevent NASH. GEO alleviated hepatic inflammation through mediated NLR family pyrin domain-containing 3 (NLRP3) inflammasome and LPS/Toll-like receptor four (TLR4) signaling pathways. GEO further increased beneficial bacterial abundance and reduced NASH-associated bacterial abundance. CONCLUSION: This study demonstrated that GEO prevents NASH progression which is probably associated with the alterations of gut microbiota and inhibition of the LPS/TLR4/NF-κB pathway. Hence, GEO may offer a promising application as a dietary supplement for the prevention of NASH.


Subject(s)
Gastrointestinal Microbiome , Inflammasomes , Lipopolysaccharides , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Non-alcoholic Fatty Liver Disease , Oils, Volatile , Signal Transduction , Toll-Like Receptor 4 , Zingiber officinale , Animals , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Gastrointestinal Microbiome/drug effects , Toll-Like Receptor 4/metabolism , Oils, Volatile/pharmacology , Oils, Volatile/therapeutic use , Mice , Inflammasomes/metabolism , Inflammasomes/drug effects , Male , Signal Transduction/drug effects , Diet, High-Fat/adverse effects , Disease Progression , Liver/metabolism , Liver/drug effects , Disease Models, Animal
7.
J Agric Food Chem ; 72(33): 18630-18637, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39116173

ABSTRACT

The formation pathway and mechanism of various pyrazines were investigated during the thermal treatment of the alanine-xylose Amadori compound (Ala-ARP) and exogenous alanine (Ala). 15N-labeled Ala was used to coheated with Ala-ARP to clarify the nitrogen sources and the respective contributions of exogenous Ala and the regenerated Ala released from Ala-ARP to different pyrazine formation. It was found that exogenous Ala exhibited a priority in capturing glyoxal (GO) to form pyrazine during the thermal degradation of ARP. Compared to the Ala-methylglyoxal (MGO) model, a lower activation energy was required for the Ala-GO reaction, where the reaction dynamics of Ala-GO followed a zero-order model. In addition to forming pyrazine, the interaction between existing exogenous Ala and GO would accelerate the thermal degradation of Ala-ARP and retro-aldolization reaction of deoxyxylosones (DXs) to α-dicarbonyls. During this process, the release of regenerated Ala and MGO was promoted. Accordingly, as GO was expended by exogenous Ala during the initial stage of ARP-Ala degradation, the condensation between regenerated Ala and MGO became intensified, leading to the generation of methylpyrazine and 2,5-dimethylpyrazine. As a result, in the thermally treated mixture of Ala-ARP and exogenous Ala, 55% of the formed pyrazine originated from exogenous Ala, while 63% of the formed methylpyrazine and 57% of the formed 2,5-dimethylpyrazine were derived from regenerated Ala (120 °C, 30 min).


Subject(s)
Alanine , Hot Temperature , Pyrazines , Pyrazines/chemistry , Alanine/chemistry , Alanine/analogs & derivatives , Isotope Labeling , Nitrogen/chemistry , Xylose/chemistry , Maillard Reaction , Kinetics
8.
Food Chem ; 459: 140335, 2024 Nov 30.
Article in English | MEDLINE | ID: mdl-38981383

ABSTRACT

The characteristic aroma compounds of traditional braised pork were investigated by gas chromatography-mass spectrometry-olfactometry (GC-MS-O), odor-activity values, and aroma recombination and omission experiments. A total of 56 volatile compounds were detected by GC-MS, among which hexanal, octanal, nonanal, (E)-2-octenal, 2,3-octanedione, 1-octen-3-ol, 2-pentylfuran, methanethiol, and dimethyl trisulfide were identified as the key aroma compounds by molecular sensory science. Partial least squares regression analysis indicated that some aroma compounds significantly contributed to fatty (hexanal, heptanal, 2-pentylfuran, nonanal, and (E)-2-octenal), meaty (methanethiol, dimethyl disulfide, dimethyl trisulfide, and octanal), sauce-like flavor (3-hydroxy-2-butanone and 2-furfural), and sweet, caramel (2,3-octanedione, 1-octen-3-ol). Lean meat produced more aldehydes, alcohols, ketones, and sulfur-containing compounds than subcutaneous fat. The seasonings (saccharose, cooking wine, and soy sauce) facilitated the formation of ethyl L-lactate, 2-acetylfuran, 2-furfural, 5-methyl-2-furaldehyde, 2-methyl-pyrazine, and 2-acetylpyrrole. Meanwhile they reduced the content of lipid oxidation products, thereby stimulated the characteristic aroma of the Chinese traditional braised pork.


Subject(s)
Gas Chromatography-Mass Spectrometry , Odorants , Volatile Organic Compounds , Volatile Organic Compounds/chemistry , Odorants/analysis , Animals , Swine , Humans , Adult , Male , Female , Flavoring Agents/chemistry , Taste , Cooking , Middle Aged , Young Adult , Olfactometry
9.
J Agric Food Chem ; 72(30): 16930-16940, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39038222

ABSTRACT

Lysine (Lys) is capable of forming a di-substituted Amadori rearrangement product (ARP) with xylose (Xyl), designated as diXyl-α,ε-Lys-ARP. DiXyl-α,ε-Lys-ARP degradation was characterized by two steps: Initially, Xyl-α- and Xyl-ε-Lys-ARP were formed through elimination or hydrolysis at specific Nα/Nε positions of the corresponding enol and imine intermediates, which were then further degraded to dicarbonyl compounds and regenerated Lys. Xyl-α- or Xyl-ε-Lys-ARP had a reactive free amino group (ε-NH2 or α-NH2), both of which were still highly reactive and able to undergo further reactions with Xyl. Therefore, the diXyl-α,ε-Lys-ARP/Xyl model system was established to explore the impact of extra-added Xyl on diXyl-α,ε-Lys-ARP degradation behavior. Extra-added Xyl remarkably affected the degradation pathway of diXyl-α,ε-Lys-ARP by capturing the Xyl-α- and Xyl-ε-Lys-ARP to regenerate diXyl-α,ε-Lys-ARP. This interaction between Xyl and mono-substituted Lys-ARPs promoted the shift of chemical equilibrium toward the degradation of diXyl-α,ε-Lys-ARP, thereby accelerating its degradation rate. This degradation was markedly facilitated by the elevated temperature and pH values. Interestingly, the yield of Xyl-α- and Xyl-ε-Lys-ARP was particularly dependent on the pH during diXyl-α,ε-Lys-ARP degradation. Xyl-ε-Lys-ARP was the dominant product at pH 5.5-7.5 while Xyl-α-Lys-ARP possessed a relatively higher content under weak alkaline conditions, which was related to the reactivities of the Nα/Nε positions under various reaction conditions.


Subject(s)
Lysine , Maillard Reaction , Xylose , Xylose/chemistry , Lysine/chemistry , Hydrolysis , Kinetics , Hot Temperature
10.
Commun Biol ; 7(1): 749, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902371

ABSTRACT

Dietary emulsifiers are linked to various diseases. The recent discovery of the role of gut microbiota-host interactions on health and disease warrants the safety reassessment of dietary emulsifiers through the lens of gut microbiota. Lecithin, sucrose fatty acid esters, carboxymethylcellulose (CMC), and mono- and diglycerides (MDG) emulsifiers are common dietary emulsifiers with high exposure levels in the population. This study demonstrates that sucrose fatty acid esters and carboxymethylcellulose induce hyperglycemia and hyperinsulinemia in a mouse model. Lecithin, sucrose fatty acid esters, and CMC disrupt glucose homeostasis in the in vitro insulin-resistance model. MDG impairs circulating lipid and glucose metabolism. All emulsifiers change the intestinal microbiota diversity and induce gut microbiota dysbiosis. Lecithin, sucrose fatty acid esters, and CMC do not impact mucus-bacterial interactions, whereas MDG tends to cause bacterial encroachment into the inner mucus layer and enhance inflammation potential by raising circulating lipopolysaccharide. Our findings demonstrate the safety concerns associated with using dietary emulsifiers, suggesting that they could lead to metabolic syndromes.


Subject(s)
Dysbiosis , Emulsifying Agents , Gastrointestinal Microbiome , Metabolic Diseases , Animals , Dysbiosis/chemically induced , Dysbiosis/microbiology , Gastrointestinal Microbiome/drug effects , Mice , Male , Metabolic Diseases/chemically induced , Metabolic Diseases/microbiology , Metabolic Diseases/metabolism , Metabolic Diseases/etiology , Mice, Inbred C57BL , Carboxymethylcellulose Sodium , Sucrose/adverse effects , Sucrose/administration & dosage , Sucrose/metabolism , Insulin Resistance , Lecithins
11.
J Food Drug Anal ; 32(2): 227-238, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38934691

ABSTRACT

We aimed to investigate the therapeutic potential of ibuprofen against type 2 diabetes (T2D) using obese Zucker diabetic fatty (ZDF) rats as type 2 diabetes model. ZDF rats were hyperglycemic, dyslipidemic and expressed proinflammatory markers in contrast to lean controls, thus reflecting the relationship between obesity and chronic inflammation promoting T2D. Chronic treatment with ibuprofen (2-(4-Isobutylphenyl)propanoic acid) was used to study the impact on pathological T2D conditions as compared to metformin (1,1-dimethylbiguanide) treated ZDF as well as lean controls. Ibuprofen decreased A1c but induced a high insulin release with improved glucose tolerance only after early time points (i.g., 15 and 30 min) resulting in a non-significant decline of AUC values and translating into a high HOMA-IR. In addition, ibuprofen significantly lowered cholesterol, free fatty acids and HDL-C. Some of these effects by ibuprofen might be based on its anti-inflammatory effects through inhibition of cytokine/chemokine signaling (i.g., COX-2, ICAM-1 and TNF-α) as measured in whole blood and epididymal adipose tissue by TaqMan and/or upregulation of anti-inflammatory cytokines (i.g., IL-4 and IL-13) by ELISA analysis in blood. In conclusion, our ZDF animal study showed positive effects of ibuprofen against diabetic complications such as inflammation and dyslipidemia but also demonstrated the risk of causing insulin resistance.


Subject(s)
Diabetes Mellitus, Type 2 , Ibuprofen , Rats, Zucker , Animals , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Ibuprofen/pharmacology , Ibuprofen/administration & dosage , Rats , Male , Blood Glucose/metabolism , Blood Glucose/drug effects , Humans , Disease Models, Animal , Insulin/metabolism , Obesity/drug therapy , Obesity/metabolism , Cytokines/metabolism , Insulin Resistance
12.
J Agric Food Chem ; 72(26): 14786-14798, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38902910

ABSTRACT

Some thermal degradants of curcuminoids have demonstrated moderate health benefits in previous studies. Feruloyl acetone (FER), recently identified as a thermal degradant of curcumin, has been previously associated with anticancer and antioxidative effects, yet its other capabilities remain unexplored. Moreover, earlier reports suggest that methoxy groups on the aromatic ring may influence the functionality of the curcuminoids. To address these gaps, an animal study was conducted to investigate the antiobesity effects of both FER and its demethoxy counterpart (DFER) on mice subjected to a high-fat diet. The results demonstrated the significant prevention of weight gain and enlargement of the liver and various adipose tissues by both samples. Furthermore, these supplements exhibited a lipid regulatory effect in the liver through the adiponectin/AMPK/SIRT1 pathway, promoted thermogenesis via AMPK/PGC-1α activation, and positively influenced gut-microbial-produced short-chain fatty acid (SCFA) levels. Notably, DFER demonstrated superior overall efficacy in combating obesity, while FER displayed a significant effect in modulating inflammatory responses. It is considered that SCFA may be responsible for the distinct effects of FER and DFER in the animal study. Future studies are anticipated to delve into the efficacy of curcuminoid degradants, encompassing toxicity and pharmacokinetic evaluations.


Subject(s)
Anti-Obesity Agents , Curcumin , Diet, High-Fat , Mice, Inbred C57BL , Obesity , Animals , Curcumin/chemistry , Curcumin/pharmacology , Curcumin/metabolism , Mice , Obesity/metabolism , Obesity/drug therapy , Male , Anti-Obesity Agents/chemistry , Anti-Obesity Agents/administration & dosage , Humans , Diet, High-Fat/adverse effects , Liver/metabolism , Liver/drug effects , Liver/chemistry , Thermogenesis/drug effects , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Adipose Tissue/chemistry
13.
Phytother Res ; 38(8): 4099-4113, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38899498

ABSTRACT

Hepatic lipid metabolism is modulated by the circadian rhythm; therefore, circadian disruption may promote obesity and hepatic lipid accumulation. This study aims to investigate dietary pterostilbene (PSB) 's protective effect against high-fat-diet (HFD)-induced lipid accumulation exacerbated by chronic jet lag and the potential role of gut microbiota therein. Mice were treated with a HFD and chronic jet lag for 14 weeks. The experimental group was supplemented with 0.25% (w/w) PSB in its diet to evaluate whether PSB had a beneficial effect. Our study found that chronic jet lag exacerbates HFD-induced obesity and hepatic lipid accumulation, but these adverse effects were significantly mitigated by PSB supplementation. Specifically, PSB promoted hepatic lipolysis and ß-oxidation by upregulating SIRT1 expression, which indirectly reduced oxidative stress caused by lipid accumulation. Additionally, the PSB-induced elevation of SIRT1 and SIRT3 expression helped prevent excessive autophagy and mitochondrial fission by activating Nrf2-mediated antioxidant enzymes. The result was evidenced by the use of SIRT1 and SIRT3 inhibitors in in vitro studies, which demonstrated that activation of SIRT1 and SIRT3 by PSB is crucial for the translocation of PGC-1α and Nrf2, respectively. Moreover, the analysis of gut microbiota suggested that PSB's beneficial effects were partly due to its positive modulation of gut microbial composition and functionality. The findings of this study suggest the potential of dietary PSB as a candidate to improve hepatic lipid metabolism via several mechanisms. It may be developed as a treatment adjuvant in the future.


Subject(s)
Diet, High-Fat , Jet Lag Syndrome , Lipid Metabolism , Liver , Mice, Inbred C57BL , Oxidative Stress , Sirtuin 1 , Sirtuin 3 , Stilbenes , Animals , Sirtuin 1/metabolism , Diet, High-Fat/adverse effects , Mice , Male , Lipid Metabolism/drug effects , Stilbenes/pharmacology , Liver/drug effects , Liver/metabolism , Sirtuin 3/metabolism , Jet Lag Syndrome/drug therapy , Oxidative Stress/drug effects , Gastrointestinal Microbiome/drug effects , Obesity , Dietary Supplements
14.
Eur J Pharmacol ; 978: 176789, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38945287

ABSTRACT

The increased incidence of obesity, which become a global health problem, requires more functional food products with minor side and excellent effects. Calebin A (CbA) is a non-curcuminoid compound, which is reported to be an effective treatment for lipid metabolism and thermogenesis. However, its ability and mechanism of action in improving obesity-associated hyperglycemia remain unclear. This study was designed to explore the effect and mechanism of CbA in hyperglycemia via improvement of inflammation and glucose metabolism in the adipose tissue and liver in high-fat diet (HFD)-fed mice. After 10 weeks fed HFD, obese mice supplemented with CbA (25 and 100 mg/kg) for another 10 weeks showed a remarkable reducing adiposity and blood glucose. CbA modulated M1/M2 macrophage polarization, ameliorated inflammatory cytokines, and restored adiponectin as well as Glut 4 expression in the adipose tissue. In the in vitro study, CbA attenuated pro-inflammatory markers while upregulated anti-inflammatory IL-10 in LPS + IFNγ-generated M1 phenotype macrophages. In the liver, CbA attenuated steatosis, inflammatory infiltration, and protein levels of inflammatory TNF-α and IL-6. Moreover, CbA markedly upregulated Adiponectin receptor 1, AMPK, and insulin downstream Akt signaling to improve glycogen content and increase Glut2 protein. These findings indicated that CbA may be a novel therapeutic approach to treat obesity and hyperglycemia phenotype targeting on adipose inflammation and hepatic insulin signaling.


Subject(s)
Adipose Tissue , Diet, High-Fat , Glucose , Hyperglycemia , Inflammation , Liver , Macrophages , Obesity , Animals , Diet, High-Fat/adverse effects , Mice , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Glucose/metabolism , Obesity/drug therapy , Obesity/metabolism , Macrophages/drug effects , Macrophages/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , RAW 264.7 Cells , Mice, Obese , Mice, Inbred C57BL , Signal Transduction/drug effects , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Blood Glucose/metabolism , Blood Glucose/drug effects , Proto-Oncogene Proteins c-akt/metabolism
15.
Int J Biol Macromol ; 272(Pt 1): 132738, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38825269

ABSTRACT

Piperine (PIP) has been known for its pharmacological activities with low water solubility and poor dissolution, which limits its nutritional application. The purpose of this research was to enhance PIP stability, dispersibility and biological activity by preparing PIP nanoparticles using the wet-media milling approach combined with nanosuspension solidification methods of spray/freeze drying. Octenyl succinic anhydride (OSA)-modified waxy maize starch was applied as the stabilizer to suppress aggregation of PIP nanoparticles. The particle size, redispersibility, storage stability and in vitro release behavior of PIP nanoparticles were measured. The regulating effect on adipocyte differentiation was evaluated using 3T3-L1 cell model. Results showed that PIP nanoparticles had a reduced particle size of 60 ± 1 nm, increased release rate in the simulated gastric (SGF) and intestinal fluids (SIF) and enhanced inhibition effect on adipogenesis in 3T3-L1 cells compared with free PIP, indicating that PIP-loaded nanoparticles with improved stability and anti-adipogenic property were developed successfully by combining wet-media milling and drying methods.


Subject(s)
3T3-L1 Cells , Adipocytes , Adipogenesis , Alkaloids , Benzodioxoles , Nanoparticles , Piperidines , Polyunsaturated Alkamides , Starch , Animals , Mice , Nanoparticles/chemistry , Polyunsaturated Alkamides/chemistry , Polyunsaturated Alkamides/pharmacology , Benzodioxoles/pharmacology , Benzodioxoles/chemistry , Piperidines/pharmacology , Piperidines/chemistry , Adipogenesis/drug effects , Alkaloids/chemistry , Alkaloids/pharmacology , Adipocytes/drug effects , Starch/chemistry , Starch/analogs & derivatives , Particle Size , Drug Liberation , Cell Differentiation/drug effects
16.
Food Res Int ; 188: 114506, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823846

ABSTRACT

The characteristic aroma compounds of braised pork were identified through molecular sensory science and PLSR analysis, and the difference between two cooking methods, traditional open-fire (BPF) and induction cooker (BPC), was compared. Seventeen aroma compounds with odor activity values (OAVs) > 1 were identified in both samples. BPF revealed higher OAVs for most of the aroma compounds compared to BPC, and the higher aroma quality. Aroma recombination and omission experiments confirmed that twelve aroma compounds significantly contributed to the characteristic aroma of braised pork, and eight compounds such as hexanal, (E)-2-octenal, and methanethiol were further confirmed as important contributors by PLSR analysis. Furthermore, PLSR analysis clarified the role of aldehydes such as hexanal, (E)-2-octenal, and (E,E)-2,4-decadienal in contributing to fatty attribute, whereas methanethiol was responsible for the meaty aroma. These characteristic aroma compounds mainly derived from lean meat due to its high content of phospholipids, and the exogenous seasonings contributed to the balanced characteristic aroma profile of braised pork by altering the distribution of these characteristic aroma compounds. Variations in heating parameters affected the formation of lipid oxidation and Strecker degradation products, which might explain aroma discrepancy between braised pork cooked by two methods with different heat transfer efficiencies.


Subject(s)
Aldehydes , Cooking , Odorants , Cooking/methods , Odorants/analysis , Animals , Swine , Aldehydes/analysis , Volatile Organic Compounds/analysis , Pork Meat/analysis , Humans , Sulfhydryl Compounds/analysis
17.
Food Funct ; 15(12): 6217-6231, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38767618

ABSTRACT

Cinnamaldehyde (CA) is the main bioactive component extracted from the internal bark of cinnamon trees with many health benefits. In this paper, the bioavailability and biological activities of cinnamaldehyde, and the underlying molecular mechanism are reviewed and discussed, including antioxidant, cardioprotective, anti-inflammatory, anti-obesity, anticancer, and antibacterial properties. Common delivery systems that could improve the stability and bioavailability of CA are also summarized and evaluated, such as micelles, microcapsules, liposomes, nanoparticles, and nanoemulsions. This work provides a comprehensive understanding of the beneficial functions and delivery strategies of CA, which is useful for the future application of CA in the functional food industry.


Subject(s)
Acrolein , Drug Delivery Systems , Acrolein/analogs & derivatives , Acrolein/pharmacology , Acrolein/chemistry , Humans , Drug Delivery Systems/methods , Animals , Administration, Oral , Biological Availability , Nanoparticles/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Cinnamomum zeylanicum/chemistry
18.
J Agric Food Chem ; 72(21): 12184-12197, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38745351

ABSTRACT

Oolong tea polyphenols (OTP) have attracted wide attention due to their ability to reduce inflammatory response, regulate gut microbiota, and improve cognitive function. However, exactly how the gut microbiota modulates nervous system activity is still an open question. We previously expounded that supplementing with OTP alleviated neuroinflammation in circadian rhythm disorder (CRD) mice. Here, we showed that OTP can relieve microglia activation by reducing harmful microbial metabolites lipopolysaccharide (LPS) that alleviate CRD-induced cognitive decline. Mechanistically, OTP suppressed the inflammation response by regulating the gut microbiota composition, including upregulating the relative abundance of Muribaculaceae and Clostridia_UCG-014 and downregulating Desulfovibrio, promoting the production of short-chain fatty acids (SCFAs). Moreover, the use of OTP alleviated intestinal barrier damage and decreased the LPS transport to the serum. These results further inhibited the activation of microglia, thus alleviating cognitive impairment by inhibiting neuroinflammation, neuron damage, and neurotoxicity metabolite glutamate elevation. Meanwhile, OTP upregulated the expression of synaptic plasticity-related protein postsynaptic density protein 95 (PSD-95) and synaptophysin (SYN) by elevating the brain-derived neurotrophic factor (BDNF) level. Taken together, our findings suggest that the OTP has the potential to prevent CRD-induced cognition decline by modulating gut microbiota and microbial metabolites.


Subject(s)
Camellia sinensis , Chronobiology Disorders , Cognitive Dysfunction , Gastrointestinal Microbiome , Mice, Inbred C57BL , Neuroprotective Agents , Polyphenols , Tea , Gastrointestinal Microbiome/drug effects , Animals , Polyphenols/pharmacology , Polyphenols/administration & dosage , Mice , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/prevention & control , Cognitive Dysfunction/etiology , Male , Tea/chemistry , Camellia sinensis/chemistry , Neuroprotective Agents/pharmacology , Chronobiology Disorders/metabolism , Chronobiology Disorders/drug therapy , Chronobiology Disorders/physiopathology , Humans , Bacteria/classification , Bacteria/drug effects , Bacteria/metabolism , Bacteria/genetics , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Microglia/drug effects , Microglia/metabolism , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Plant Extracts/chemistry
19.
J Agric Food Chem ; 72(19): 11153-11163, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38695891

ABSTRACT

Maillard reaction (MR) plays a pivotal role in the food flavor industry, including a cascade of reactions starting with the reaction between amino compounds and reducing sugars, and thus provides various colors and flavors. A new group of volatile compounds called pyrazinones found in MR are now getting more attention. In this study, eight volatile pyrazinones were found in the asparagine MR systems, in which 3,5-dimethyl- and 3,6-dimethyl-2(1H)-pyrazinones were reported for the first time. The major formation pathways were the reactions between asparagine and α-dicarbonyls, with decarboxylation as a critical step. Besides, novel alternative pathways involving alanine amidation and successive reactions with α-dicarbonyls were explored and successfully formed eight pyrazinones. The major differences between alanine-amidated pathways and decarboxylation pathways are the amidation step and absence of the decarboxylation step. For the alanine-amidated pathways, the higher the temperature, the better the amidation effect. The optimal amidation temperature was 200 °C in this study. The reaction between the alanine amide and α-dicarbonyls after amidation can happen at low temperatures, such as 35 and 50 °C, proposing the possibility of pyrazinone formation in real food systems. Further investigations should be conducted to investigate volatile pyrazinones in various food systems as well as the biological effects and kinetic formation differences of the volatile pyrazinones.


Subject(s)
Alanine , Asparagine , Maillard Reaction , Pyrazines , Volatile Organic Compounds , Pyrazines/chemistry , Alanine/chemistry , Asparagine/chemistry , Volatile Organic Compounds/chemistry , Flavoring Agents/chemistry
20.
Front Pharmacol ; 15: 1375779, 2024.
Article in English | MEDLINE | ID: mdl-38751784

ABSTRACT

To expand the application of nobiletin (NOB) in semi-solid functional foods, bovine serum albumin (BSA)/carboxymethyl inulin (CMI) complexes-stabilized Pickering emulsion (BCPE) (φoil = 60%, v/v) was fabricated, and the swallowing index and bioavailability of the NOB-loaded Pickering emulsion was evaluated. Confocal laser scanning microscope (CLSM) and cryo-scanning electron microscopy (cryo-SEM) images revealed that BSA/CMI complexes attached to the oil-water interface. NOB-loaded BCPE exhibited a viscoelastic and shear-thinning behavior. Fork drip test results suggested that the textural value of unloaded and NOB-loaded emulsions was International Dysphagia Diet Standardisation Initiative Level 4, which could be swallowed directly without chewing. The in vitro lipolysis model suggested that NOB had a faster digestive profile and a higher bioaccessibility in the BCPE than in the oil suspension. The in vivo rat model revealed that the oral bioavailability of NOB was increased by 2.07 folds in BCPE compared to its bioavailability in unformulated oil. Moreover, BCPE led to a higher plasma concentration of the major demethylated metabolite of NOB (4'-demethylnobiletin) than the unformulated oil. Accordingly, BCPE enhanced the oral bioavailability of NOB by improving bioaccessibility, absorption, and biotransformation.

SELECTION OF CITATIONS
SEARCH DETAIL