Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 214
Filter
1.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892229

ABSTRACT

Synthetic deer antler peptides (TSKYR, TSK, and YR) stimulate the proliferation of human chondrocytes and osteoblasts and increase the chondrocyte content of collagen and glycosamino-glycan in vitro. This study investigated the peptide mixture's pain relief and chondroprotective effect in a rat model of collagenase-induced osteoarthritis. Thirty-six adult male Sprague-Dawley rats were divided into three groups: control (saline), positive control (hyaluronic acid), and ex-perimental (peptides). Intra-articular collagenase injections were administered on days 1 and 4 to induce osteoarthritis in the left knees of the rats. Two injections of saline, hyaluronic acid, or the peptides were injected into the same knees of each corresponding group at the beginning of week one and two, respectively. Joint swelling, arthritic pain, and histopathological changes were evaluated. Injection of the peptides significantly reduced arthritic pain compared to the control group, as evidenced by the closer-to-normal weight-bearing and paw withdrawal threshold test results. Histological analyses showed reduced cartilage matrix loss and improved total cartilage degeneration score in the experimental versus the control group. Our findings suggest that intra-articular injection of synthetic deer antler peptides is a promising treatment for osteoarthritis.


Subject(s)
Antlers , Deer , Disease Models, Animal , Osteoarthritis, Knee , Peptides , Rats, Sprague-Dawley , Animals , Injections, Intra-Articular , Antlers/chemistry , Osteoarthritis, Knee/drug therapy , Osteoarthritis, Knee/pathology , Osteoarthritis, Knee/chemically induced , Male , Rats , Peptides/administration & dosage , Peptides/pharmacology , Peptides/therapeutic use , Hyaluronic Acid/administration & dosage , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Collagenases
2.
Article in English | MEDLINE | ID: mdl-38837810

ABSTRACT

The most effective drug, doxorubicin (DOX), is widely used worldwide for clinical application as an anticancer drug. DOX-induced cytotoxicity is characterized by mitochondrial dysfunction. There is no alternative treatment against DOX-induced cardiac damage despite intensive research in the present decades. Ohwia caudata has emerged as a potential herbal remedy that prevents from DOX-induced cytotoxicity owing to its pharmacological action of sustaining mitochondrial dynamics by attenuating oxidative stress and inducing cellular longevity. However, its underlying mechanisms are unknown. The novel treatment provided here depends on new evidence from DOX-treated H9c2 cells, which significantly enhanced insulin-like growth factor (IGF) II receptor (IGF-IIR) pathways that activated calcineurin and phosphorylated dynamin-related protein 1 (p-Drp1) at ser616 (p-Drp1[ser616]); cells undergo apoptosis due to these factors, which translocate to mitochondria and disrupt their function and integrity, and in terms of herbal medicine treatment, which significantly blocked these phenomena. Thus, our findings indicate that maintaining integrity of mitochondria is an essential element in lowering DOX-induced cytotoxicity, which further emphasizes that our herbal medicine can successfully block IGF-IIR pathways and could potentially act as an alternative mechanism in terms of cardioprotective against doxorubicin.

3.
Bot Stud ; 65(1): 14, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842634

ABSTRACT

BACKGROUND: The clinical efficacy of Jinchuang Ointment, a traditional Chinese medicine (TCM), in treating chronic non-healing diabetic wounds has been demonstrated over the past decades. Both in vitro and in vivo angiogenic activities have been reported for its herbal ingredients, including dragon blood from the palm tree Daemonorops draco and catechu from Uncaria gambir Roxb. Additionally, crude extracts of dragon blood have exhibited hypoglycemic effects not only in animal studies but also in cell-based in vitro assays. RESULTS: Our findings indicate that crude dragon blood extract promotes the differentiation of myoblasts into myotubes. Partially purified fractions of dragon blood crude extract significantly enhance the expression of muscle cell differentiation-related genes such as myoG, myoD, and myoHC. Our results also demonstrate that crude extracts of dragon blood can inhibit platelet-derived growth factor-induced PAI-1 expression in primary rat vascular smooth muscle cells, thereby favoring changes in hemostasis towards fibrinolysis. Consistent with previous reports, reduced expression of plasminogen activator inhibitor 1 (PAI-1) accelerates wound healing. However, further separation resulted in a significant loss of both activities, indicating the involvement of more than one compound in these processes. Stem cells play a crucial role in muscle injury repair. Neither dragon blood nor catechu alone stimulated the proliferation of human telomerase reverse transcriptase (hTERT)-immortalized and umbilical cord mesenchymal stem cells. Interestingly, the proliferation of both types of stem cells was observed when crude extracts of dragon blood and catechu were present together in the stem cell growth medium. CONCLUSIONS: Dragon blood from D. draco offers multifaceted therapeutic benefits for treating chronic nonhealing diabetic wounds from various perspectives. Most drugs in Western medicine consist of small molecules with defined ingredients. However, this is not the case in TCM, as the activities of dragon blood reported in this study. Surprisingly, the activities documented here align with descriptions in ancient Chinese medical texts dating back to A.D. 1625.

4.
Int J Med Sci ; 21(8): 1491-1499, 2024.
Article in English | MEDLINE | ID: mdl-38903928

ABSTRACT

Age-related structural and functional changes in the kidney can eventually lead to development of chronic kidney disease, which is one of the leading causes of mortality among elderly people. For effective management of age-related kidney complications, it is important to identify new therapeutic interventions with minimal side-effects. The present study was designed to evaluate the synergistic effect of a traditional Chinese herb, Alpinate Oxyphyllae Fructus (AOF), and adipose-derived mesenchymal stem cells (ADMSCs) in ameliorating D-galactose (D-gal)-induced renal aging phenotypes in WKY rats. The study findings showed that D-gal-induced alteration in the kidney morphology was partly recovered by the AOF and ADMSC co-treatment. Moreover, the AOF and ADMSC co-treatment reduced the expression of proinflammatory mediators (NFkB, IL-6, and Cox2) and increased the expression of redox regulators (Nrf2 and HO-1) in the kidney, which were otherwise augmented by the D-gal treatment. Regarding kidney cell death, the AOF and ADMSC co-treatment was found to abolish the proapoptotic effects of D-gal by downregulating Bax and Bad expressions and inhibiting caspase 3 activation. Taken together, the study findings indicate that the AOF and ADMSC co-treatment protect the kidney from D-gal-induced aging by reducing cellular inflammation and oxidative stress and inhibiting renal cell death. This study can open up a new path toward developing novel therapeutic interventions using both AOF and ADMSC to effectively manage age-related renal deterioration.


Subject(s)
Drugs, Chinese Herbal , Galactose , Kidney , Mesenchymal Stem Cells , Animals , Galactose/adverse effects , Rats , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Kidney/drug effects , Kidney/pathology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Oxidative Stress/drug effects , Male , Apoptosis/drug effects , Mesenchymal Stem Cell Transplantation/methods , Humans , Renal Insufficiency, Chronic/therapy , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/drug therapy
5.
Environ Toxicol ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760990

ABSTRACT

The primary function of the skin is to form a mechanical, permeability, antimicrobial, and ultraviolet radiation barrier, which is essential for maintaining physiological homeostasis. Our previous studies demonstrated that cutaneous pigmentation could promote skin barrier function in addition to providing anti-ultraviolet irradiation defense. The present study aimed to develop a new regimen that enhances skin barrier function by regulating skin pigmentation using low-concentration imiquimod. Results showed that topical application of low-concentration imiquimod effectively induced skin hyperpigmentation in the dorsal skin and external ear of mice without inducing inflammatory cell infiltration. An in vitro study also revealed that low-concentration imiquimod did not induce any cytotoxic effects on melanoma cells but triggered excessive melanin synthesis. In coculture systems, low-concentration imiquimod was noted to increase tyrosinase activity in a broader cellular context, revealing the potential role of neighboring cells in melanin production. The next-generation sequencing result indicated that PKCη and Dnm3 might regulate melanin synthesis and release during imiquimod treatment. Overall, our study presents new insights into the regulation of melanin production by low-concentration imiquimod, both in a mice model and cultured cells. Furthermore, our study highlights the potential benefits of imiquimod in promoting melanin synthesis without causing skin disruptions or inducing inflammation, validating its potential to serve as a method for enhancing skin barrier functions by regulating the epidermal melanization reaction.

6.
Heliyon ; 10(9): e29729, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38698985

ABSTRACT

Stem cells exhibit pluripotency and self-renewal abilities. Adipose-derived mesenchymal stem cells can potentially be used to reconstruct various tissues. They possess significant versatility and alleviate various aging-related diseases. Unfortunately, aging leads to senescence, apoptosis, and a decline in regenerative capacity in adipose-derived mesenchymal stem cells. These changes necessitate a strategy to mitigate the effects of aging on stem cells. Ohwia caudata (O. caudata) has therapeutic effects against several illnesses. However, studies on whether O. caudata has therapeutic effects against aging are lacking. In this study, we aimed to identify potential therapeutic anti-aging effects in the crude aqueous extract of O. caudata on adipose-derived mesenchymal stem cells. Using 0.1 µM doxorubicin, we induced aging in human adipose-derived mesenchymal stem cells (hADMSCs) and evaluated whether various concentrations of O. caudata aqueous extract exhibit anti-aging effects on them. The O. caudata extract exhibited significant antioxidant effects on hADMSCs without any toxicity. Furthermore, after treatment with the O. caudata aqueous extract, the levels of mitochondrial superoxide, DNA double-strand breaks, and telomere shortening were reduced in the hADMSCs subjected to doxorubicin-induced aging. The extract also suppressed doxorubicin-induced aging by upregulating klotho and downregulating p21 in hADMSCs. These findings indicated that the O. caudata extract exhibited anti-aging properties that modulated hADMSC homeostasis. Therefore, it could be a potential candidate for restoring the self-renewal ability and multipotency of aging hADMSCs.

7.
Environ Toxicol ; 39(7): 3872-3882, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38558324

ABSTRACT

Platycodi radix is a widely used herbal medicine that contains numerous phytochemicals beneficial to health. The health and biological benefits of P. radix have been found across various diseases. The utilization of umbilical cord stromal stem cells, derived from Wharton's jelly of the human umbilical cord, has emerged as a promising approach for treating degenerative diseases. Nevertheless, growing evidence indicates that the function of stem cells declines with age, thereby limiting their regenerative capacity. The primary objective in this study is to investigate the beneficial effects of P. radix in senescent stem cells. We conducted experiments to showcase that diminished levels of Lamin B1 and Sox-2, along with an elevation in p21, which serve as indicative markers for the senescent stem cells. Our findings revealed the loss of Lamin B1 and Sox-2, coupled with an increase in p21, in umbilical cord stromal stem cells subjected to a low-dose (0.1 µM) doxorubicin (Dox) stimulation. However, P. radix restored the Dox-damage in the umbilical cord stromal stem cells. P. radix reversed the senescent conditions when the umbilical cord stromal stem cells exposed to Dox-induced reactive oxygen species (ROS) and mitochondrial membrane potential are significantly changed. In Dox-challenged aged umbilical cord stromal stem cells, P. radix reduced senescence, increased longevity, prevented mitochondrial dysfunction and ROS and protected against senescence-associated apoptosis. This study suggests that P. radix might be as a therapeutic and rescue agent for the aging effect in stem cells. Inhibition of cell death, mitochondrial dysfunction and aging-associated ROS with P. radix provides additional insights into the underlying molecular mechanisms.


Subject(s)
Cellular Senescence , Doxorubicin , Mitochondria , Plant Extracts , Reactive Oxygen Species , Umbilical Cord , Humans , Reactive Oxygen Species/metabolism , Cellular Senescence/drug effects , Umbilical Cord/cytology , Umbilical Cord/drug effects , Plant Extracts/pharmacology , Doxorubicin/toxicity , Doxorubicin/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Membrane Potential, Mitochondrial/drug effects , Platycodon/chemistry , Mesenchymal Stem Cells/drug effects , Cells, Cultured
8.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38675396

ABSTRACT

Orally administered "tortoiseshell and deer antler gelatin" is a common traditional medicine for patients with osteoporosis or osteoarthritis. From the pepsin-digested gelatin, we previously isolated and identified the osteoblast-stimulating pentapeptide, TSKYR. Its trypsin digestion products include the dipeptide YR, enhancing calcium ion uptake, and tripeptide TSK, resulting in remarkable 30- and 50-fold increases in mineralized nodule area and density in human osteoblast cells. These peptides were chemically synthesized in this study. The composition of deer antler preparations comprises not only proteins and peptides but also a significant quantity of metal ion salts. By analyzing osteoblast growth in the presence of peptide YR and various metal ions, we observed a synergistic effect of calcium and strontium on the effects of YR. Those peptides could also stimulate the growth of C2C12 skeletal muscle cells and human chondrocytes, increasing collagen and glycosaminoglycan content in a three-dimensional environment. The maintenance of bone homeostasis relies on a balance between osteoclasts and osteoblasts. Deer antler peptides were observed to inhibit osteoclast differentiation, as evidenced by ROS generation, tartrate-resistant acid phosphatase (TRACP) activity assays, and gene expression in RAW264.7 cells. In summary, our findings provide a deep understanding of the efficacy of this folk medicine.

9.
Tzu Chi Med J ; 36(2): 152-165, 2024.
Article in English | MEDLINE | ID: mdl-38645788

ABSTRACT

Objectives: The protective effects and related mechanisms of Jing-Si herbal tea (JSHT) were investigated in cellular damage mediated by pro-inflammatory cytokines, including interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α, on normal human lung fibroblast by multiomic platform analysis. Materials and Methods: The in silico high-throughput target was analyzed using pharmacophore models by BIOVIA Discovery Studio 2022 with ingenuity pathway analysis software. To assess cell viability, the study utilized the MTT assay technique. In addition, the IncuCyte S3 ZOOM System was implemented for the continuous monitoring of cell confluence of JSHT-treated cytokine-injured HEL 299 cells. Cytokine concentrations were determined using a Quantibody Human Inflammation Array. Gene expression and signaling pathways were determined using next-generation sequencing. Results: In silico high-throughput target analysis of JSHT revealed ingenuity in canonical pathways and their networks. Glucocorticoid receptor signaling is a potential signaling of JSHT. The results revealed protective effects against the inflammatory cytokines on JSHT-treated HEL 299 cells. Transcriptome and network analyses revealed that induction of helper T lymphocytes, TNFSF12, NFKB1-mediated relaxin signaling, and G-protein coupled receptor signaling play important roles in immune regulatory on JSHT-treated cytokine-injured HEL 299 cells. Conclusion: The findings from our research indicate that JSHT holds promise as a therapeutic agent, potentially offering advantageous outcomes in treating virus infections through various mechanisms. Furthermore, the primary bioactive components in JSHT justify extended research in antiviral drug development, especially in the context of addressing coronavirus.

10.
Bot Stud ; 65(1): 8, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38446324

ABSTRACT

BACKGROUND: Dragon blood is a red fruit resin from the palm tree Daemonorops draco and is a herbal ingredient used in the traditional Chinese medicine, "Jinchuang Ointment," which is used to treat non-healing diabetic wounds. According to the Taiwan Herbal Pharmacopeia, the dracorhodin content in dragon blood should exceed 1.0%. RESULTS: Our findings indicate that dracorhodin and dragon blood crude extracts can stimulate glucose uptake in mouse muscle cells (C2C12) and primary rat aortic smooth muscle cells (RSMC). Dracorhodin is not the only active compound in dragon blood crude extracts from D. draco. Next, we orally administered crude dragon blood extracts to male B6 mice. The experimental group displayed a decreasing trend in fasting blood glucose levels from the second to tenth week. In summary, crude extracts of dragon blood from D. draco demonstrated in vivo hypoglycemic effects in B6 male mice. CONCLUSIONS: We provide a scientific basis "Jinchuang ointment" in treating non-healing wounds in patients with diabetes.

11.
Tzu Chi Med J ; 36(1): 1-22, 2024.
Article in English | MEDLINE | ID: mdl-38406577

ABSTRACT

Traditional Chinese medicine (TCM) has gained considerable attention over the past few years for its multicomponent, multitarget, and multi-pathway approach to treating different diseases. Studies have shown that TCMs as adjuvant therapy along with conventional treatment may benefit in safely treating various disorders. However, investigations on finding effective herbal combinations are ongoing. A novel TCM formula, "Jing Si Herbal Tea (JSHT)," has been reported recently for their health-promoting effects in improving overall body and mental health. JSHT is a combination of eight herbs recognized in Chinese herbal pharmacopoeia for their anti-viral, anti-aging, and anti-cancer properties as well as protective effects against cardiovascular, metabolic, neural, digestive, and genitourinary diseases. Thus, to better understand the beneficial effects of the ingredients of JSHT on health, this review intends to summarize the preclinical and clinical studies of the ingredients of JSHT on human health and diseases, and possible therapeutic effects with the related mode of actions and future prospects for their application in complementary therapies.

12.
PLoS One ; 18(12): e0295432, 2023.
Article in English | MEDLINE | ID: mdl-38060514

ABSTRACT

Pain is strongly associated with neuro-immune activation. Thus, the emerging role of the endocannabinoid system in neuro-inflammation is important. Acupuncture has been used for over 2500 years and is widely accepted for the management of pain. Our study aimed to investigate the effects of electroacupuncture on the regulation of cannabinoid receptor type 1 within the peripheral nervous system. Inflammatory pain was induced by injecting Complete Freund's adjuvant to induce mechanical and thermal hyperalgesia. Electroacupuncture significantly attenuated the mechanical and thermal sensitivities, and AM251, a cannabinoid receptor type 1 antagonist, eliminated these effects. Dual immunofluorescence staining demonstrated that electroacupuncture elevated expression of cannabinoid receptor type 1, co-localized with Nav 1.8. Furthermore, electroacupuncture significantly reduced levels of Nav 1.8 and COX-2 by western blot analysis, but not vice versa as AM251 treatment. Our data indicate that electroacupuncture mediates antinociceptive effects through peripheral endocannabinoid system signaling pathway and provide evidence that electroacupuncture is beneficial for pain treatment.


Subject(s)
Electroacupuncture , Endocannabinoids , Rats , Mice , Animals , Rats, Sprague-Dawley , Pain/metabolism , Hyperalgesia/metabolism , Signal Transduction , Receptors, Cannabinoid , Inflammation/metabolism
13.
Biomed Pharmacother ; 169: 115911, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38000359

ABSTRACT

CPT-11 is one of the drugs employed in colorectal cancer treatment and has faced challenges in the form of resistance. The insulin-like growth factor 1 receptor is a tyrosine kinase receptor that mediates cancer cell survival and drug resistance. It is frequently overexpressed in colorectal cancer and has previously been identified as a microRNA target. MicroRNAs are non-coding RNA molecules that regulate gene function by suppressing messenger RNA translation. Studies have demonstrated that natural compounds can regulate microRNA function and their target genes. Therefore, combining natural compounds with existing cancer drugs can enhance the therapeutic efficacy. We investigated a natural compound, Aloin, for the potential sensitization of colorectal cancer to CPT-11. We used western blot, MTT cell viability assay, flow cytometry, and microRNA/gene knockdown and overexpression experiments, as well as an in vivo mouse model. Our investigation revealed that combining Aloin with CPT-11 exerts an enhanced anti-tumor effect in colorectal cancer. This combination reduced cell viability and induced apoptosis, both in vivo and in vitro. Furthermore, this combination upregulated miRNA-133b, while downregulating the IGF1R and its downstream MEK/ERK, and PI3K/AKT/mTOR pathways. Our findings suggests that CPT-11 and Aloin are potential combination treatment partners against colorectal cancer. MicroRNA-133b may serve as a co-therapeutic target with IGF1R against colorectal cancer, which might overcome the existing treatment limitations.


Subject(s)
Colorectal Neoplasms , MicroRNAs , Animals , Mice , Irinotecan/pharmacology , Irinotecan/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Phosphatidylinositol 3-Kinases/metabolism , MAP Kinase Signaling System , Cell Proliferation , TOR Serine-Threonine Kinases/metabolism , MicroRNAs/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Mitogen-Activated Protein Kinase Kinases/metabolism , Cell Line, Tumor
14.
Eur J Pharm Sci ; 191: 106608, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37832855

ABSTRACT

Exosome therapy is a novel trend in regeneration medicine. However, identifying a suitable biomarker that can associate the therapeutic efficacy of exosomes with SCA3/MJD is essential. In this study, parental cells were preconditioned with butylidenephthalide (Bdph) for exosome preparation to evaluate the therapeutic effect of SCA3/MJD. The therapeutic agent hsa-miRNA-6780-5p was enriched up to 98-fold in exosomes derived from butylidenephthalide (Bdph)-preconditioned human olfactory ensheathing cells (hOECs) compared with that in naïve hOECs exosomes. The particle sizes of exosomes derived from naïve hOECs and those derived from hOECs preconditioned with Bdph were approximately 113.0 ± 3.5 nm and 128.9 ± 0.7 nm, respectively. A liposome system was used to demonstrate the role of hsa-miRNA-6780-5p, wherein hsa-miRNA-6780-5p was found to enhance autophagy and inhibit the expression of spinocerebellar ataxia type 3 (SCA3) disease proteins with the polyglutamine (polyQ) tract. Exosomes with enriched hsa-miRNA-6780-5p were further applied to HEK-293-84Q cells, leading to decreased expression of polyQ and increased autophagy. The results were reversed when 3MA, an autophagy inhibitor, was added to the cells treated with hsa-miRNA-6780-5p-enriched exosomes, indicating that the decreased polyQ expression was modulated via autophagy. SCA3 mice showed improved motor coordination behavior when they intracranially received exosomes enriched with hsa-miRNA-6780-5p. SCA3 mouse cerebellar tissues treated with hsa-miRNA-6780-5p-enriched exosomes showed decreased expression of polyQ and increased expression of LC3II/I, an autophagy marker. In conclusion, our findings can serve as a basis for developing an alternative therapeutic strategy for SCA3 disease treatment using miRNA-enriched exosomes derived from chemically preconditioned cells.


Subject(s)
Exosomes , Machado-Joseph Disease , MicroRNAs , Humans , Mice , Animals , Machado-Joseph Disease/drug therapy , Machado-Joseph Disease/metabolism , Exosomes/metabolism , HEK293 Cells , MicroRNAs/metabolism
15.
Neurotox Res ; 41(6): 648-659, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37707697

ABSTRACT

Patients with Alzheimer's disease have increased risk of developing heart disease, which therefore highlights the need for strategies aiming at reducing Alzheimer's disease-related cardiovascular disease. Folic acid and folinic acid are beneficial to the heart. We aimed to investigate the benefits of folic acid and folinic acid in heart of patients with late-stage Alzheimer's disease. Twelve 16-month-old mice of triple-transgenic late-stage Alzheimer's disease were divided into three groups: Alzheimer's disease group, Alzheimer's disease + folic acid group, and Alzheimer's disease + folinic acid group. The mice were administered 12 mg/kg folic acid or folinic acid once daily via oral gavage for 3 months. In the folic acid and folinic acid treatment groups, the intercellular space was reduced, compared with the Alzheimer's disease group. TUNEL assay and western blot images showed that the number of apoptotic cells and the apoptosis-related protein expression were higher in the Alzheimer's disease group than in other two treated groups. Folic acid and folinic acid induced the IGF1R/PI3K/AKT and SIRT1/ AMPK pathways in the hearts of mice with Alzheimer's disease. Our results showed that folic acid and folinic acid treatment increased survival and SIRT1 expression to reduce apoptotic proteins in the heart. The aging mice treated with folinic acid had more IGF1R and SIRT1/AMPK axes to limit myocardial cell apoptosis. In conclusion, folic acid and folinic acid promote cardiac cell survival and prevent apoptosis to inhibit heart damage in aging mice with triple-transgenic late-stage Alzheimer's disease. In particular, folinic acid provides a better curative effect than folic acid.


Subject(s)
Alzheimer Disease , Folic Acid , Humans , Mice , Animals , Folic Acid/pharmacology , Folic Acid/therapeutic use , Leucovorin/pharmacology , Leucovorin/therapeutic use , AMP-Activated Protein Kinases , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Mice, Transgenic , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Sirtuin 1 , Aging , Receptor, IGF Type 1
16.
Aging (Albany NY) ; 15(17): 9167-9181, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37708248

ABSTRACT

Pathological cardiac hypertrophy is a considerable contributor to global disease burden. Chinese herbal medicine (CHM) has been used to treat cardiovascular diseases since antiquity. Enhancing stem cell-mediated recovery through CHM represents a promising approach for protection against doxorubicin (Dox)-induced cardiac hypertrophy. Herein, we investigated whether human adipose-derived stem cells (hADSCs) preconditioned with novel herbal formulation Jing Si (JS) improved protective ability of stem cells against doxorubicin-induced cardiac damage. The effect of JS on hADSC viability and migration capacity was determined via MTT and migration assays, respectively. Co-culture of hADSC or JS-preconditioned hADSCs with H9c2 cells was analyzed with immunoblot, flow cytometry, TUNEL staining, LC3B staining, F-actin staining, and MitoSOX staining. The in vivo study was performed M-mode echocardiography after the treatment of JS and JS-preconditioned hADSCs by using Sprague Dawley (SD) rats. Our results indicated that JS at doses below 100 µg/mL had less cytotoxicity in hADSC and JS-preconditioned hADSCs exhibited better migration. Our results also revealed that DOX enhanced apoptosis, cardiac hypertrophy, and mitochondrial reactive oxygen species in DOX-challenged H9c2 cells, while H9c2 cells co-cultured with JS-preconditioned hADSCs alleviated these effects. It also enhanced the expression of autophagy marker LC3B, mTOR and CHIP in DOX-challenged H9c2 cells after co-culture with JS-preconditioned hADSCs. In Dox-challenged rats, the ejection fraction and fractional shortening improved in DOX-challenged SD rats exposed to JS-preconditioned hADSCs. Taken together, our data indicate that JS-preconditioned stem cells exhibit a cardioprotective capacity both in vitro and in vivo, highlighting the value of this therapeutic approach for regenerative therapy.


Subject(s)
Heart , Stem Cells , Humans , Animals , Rats , Rats, Sprague-Dawley , Doxorubicin/toxicity , Cardiomegaly
17.
Chin J Physiol ; 66(4): 189-199, 2023.
Article in English | MEDLINE | ID: mdl-37635478

ABSTRACT

Lung cancer is the most common malignant cancer worldwide. Combination therapies are urgently needed to increase patient survival. Calycosin is a phytoestrogen isoflavone that has been reported previously to inhibit tumor cell growth, although its effects on lung cancer remain unclear. The aim of this study was to investigate the effects of calycosin on cell proliferation and apoptosis of gemcitabine-resistant lung cancer cells. Using calycosin to treat human lung cancer cells (CL1-0) and gemcitabine-resistant lung cancer cells (CL1-0 GEMR) and examine the effects on the cells. Cultured human lung cancer cells (CL1-0) and gemcitabine-resistant lung cancer cells (CL1-0 GEMR) were treated with increasing concentrations of calycosin. Cell viability and apoptosis were studied by the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide, flow cytometry, and TUNEL assays. Western blots were used to measure the expression levels of proliferation-related proteins and cancer stem cell proteins in CL1-0 GEMR cells. The results showed that calycosin treatment inhibited cell proliferation, decreased cell migration ability, and suppressed cancer stem cell properties in CL1-0 GEMR cells. Interestingly, in CL1-0 GEMR cells, calycosin treatment not only increased LDOC1 but also decreased GNL3L/NFκB protein levels and mRNA levels, in concentration-dependent manners. We speculate that calycosin inhibited cell proliferation of the gemcitabine-resistant cell line through regulating the LDOC1/GNL3L/NFκB pathway.


Subject(s)
Isoflavones , Lung Neoplasms , Humans , Gemcitabine , Lung Neoplasms/drug therapy , Cell Line, Tumor , NF-kappa B , Isoflavones/pharmacology , Cell Proliferation , Apoptosis , Nuclear Proteins/pharmacology , Tumor Suppressor Proteins/pharmacology , GTP-Binding Proteins/pharmacology
18.
Environ Toxicol ; 38(10): 2450-2461, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37461261

ABSTRACT

Mitochondrial dysfunction has been linked to many diseases, including organ degeneration and cancer. Wharton's jelly-derived mesenchymal stem cells provide a valuable source for stem cell-based therapy and represent an emerging therapeutic approach for tissue regeneration. This study focused on screening the senomorphic properties of Ohwia caudata aqueous extract as an emerging strategy for preventing or treating mitochondrial dysfunction in stem cells. Wharton's jelly-derived mesenchymal stem cells were incubated with 0.1 µM doxorubicin, for 24 h to induce mitochondrial dysfunction. Next, the cells were treated with a series concentration of Ohwia caudata aqueous extract (25, 50, 100, and 200 µg/mL) for another 24 h. In addition, an untreated control group and a doxorubicin-induced mitochondrial dysfunction positive control group were maintained under the same conditions. Our data showed that Ohwia caudata aqueous extract markedly suppressed doxorubicin-induced mitochondrial dysfunction by increasing Tid1 and Tom20 expression, decreased reactive oxygen species production, and maintained mitochondrial membrane potential to promote mitochondrial stability. Ohwia caudata aqueous extract retained the stemness of Wharton's jelly-derived mesenchymal stem cells and reduced the apoptotic rate. These results indicate that Ohwia caudata aqueous extract protects Wharton's jelly-derived mesenchymal stem cells against doxorubicin-induced mitochondrial dysfunction and can potentially prevent mitochondrial dysfunction in other cells. This study provides new directions for the medical application of Ohwia caudata.


Subject(s)
Mesenchymal Stem Cells , Wharton Jelly , Animals , Wharton Jelly/metabolism , Mesenchymal Stem Cells/metabolism , Doxorubicin/toxicity , Cells, Cultured , Mitochondria/metabolism , Urodela , Cell Differentiation
19.
Am J Chin Med ; 51(6): 1459-1475, 2023.
Article in English | MEDLINE | ID: mdl-37518097

ABSTRACT

Atherosclerotic cardiovascular diseases, commonly known as the formation of fibrofatty lesions in the artery wall, are the leading causes of death globally. Oxidized low-density lipoprotein (oxLDL) is one of the major components of atherosclerotic plaques. It is evident that dietary supplementation containing sources of antioxidants can prevent atherogenic diseases. Schisanhenol (SAL), a dibenzocyclooctene lignin, has been shown to attenuate oxLDL-induced apoptosis and the generation of reactive oxygen species (ROS) in endothelial cells. However, the underlying molecular mechanisms are still largely unknown. In this study, human umbilical vein endothelial cells (HUVECs) were pre-treated with SAL and oxLDL. Our results showed that adenosine monophosphate-activated protein kinase (AMPK) phosphorylation was enhanced in cells pre-treated with SAL in time-dependent and dose-dependent manners. Subsequently, oxLDL-induced AMPK dephosphorylation and protein kinase C (PKC) phosphorylation were significantly reversed in the presence of SAL. In addition, SAL treatment led to an inhibiting effect on the oxLDL-induced membrane assembly of NADPH oxidase subunits, and a similar effect was observed in ROS generation. This effect was further confirmed using knockdown AMPK with small interfering RNA (siRNA) and pharmaceutical reagents, such as the AMPK activator (AICAR), PKC inhibitor (Gö 6983), and ROS inhibitor (DPI). Furthermore, the oxLDL-induced intracellular calcium rise and the potential collapse of the mitochondrial membrane reduced the Bcl-2/Bax ratio, and released cytochrome c from the mitochondria, leading to the subsequent activation of caspase-3 in HUVECs, which were also markedly suppressed by SAL pretreatment. The results mentioned above may provide additional insights into the possible molecular mechanisms underlying the cardiovascular protective effects of SAL.


Subject(s)
AMP-Activated Protein Kinases , Oxidative Stress , Humans , Reactive Oxygen Species/metabolism , AMP-Activated Protein Kinases/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Lipoproteins, LDL , Apoptosis , Cells, Cultured
20.
Phytother Res ; 37(9): 3964-3981, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37186468

ABSTRACT

Doxorubicin (DOX), an effective chemotherapeutic drug, has been used to treat various cancers; however, its cardiotoxic side effects restrict its therapeutic efficacy. Fisetin, a flavonoid phytoestrogen derived from a range of fruits and vegetables, has been reported to exert cardioprotective effects against DOX-induced cardiotoxicity; however, the underlying mechanisms remain unclear. This study investigated fisetin's cardioprotective role and mechanism against DOX-induced cardiotoxicity in H9c2 cardiomyoblasts and ovariectomized (OVX) rat models. MTT assay revealed that fisetin treatment noticeably rescued DOX-induced cell death in a dose-dependent manner. Moreover, western blotting and TUNEL-DAPI staining showed that fisetin significantly attenuated DOX-induced cardiotoxicity in vitro and in vivo by inhibiting the insulin-like growth factor II receptor (IGF-IIR) apoptotic pathway through estrogen receptor (ER)-α/-ß activation. The echocardiography, biochemical assay, and H&E staining results demonstrated that fisetin reduced DOX-induced cardiotoxicity by alleviating cardiac dysfunction, myocardial injury, oxidative stress, and histopathological damage. These findings imply that fisetin has a significant therapeutic potential against DOX-induced cardiotoxicity.


Subject(s)
Cardiotoxicity , Insulin-Like Growth Factor II , Rats , Animals , Cardiotoxicity/drug therapy , Insulin-Like Growth Factor II/metabolism , Insulin-Like Growth Factor II/pharmacology , Insulin-Like Growth Factor II/therapeutic use , Receptors, Estrogen/metabolism , Doxorubicin/adverse effects , Oxidative Stress , Myocytes, Cardiac , Apoptosis
SELECTION OF CITATIONS
SEARCH DETAIL
...