Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 72
1.
J Microsc ; 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38357769

Genetically encoded, fluorescent protein (FP)-based Förster resonance energy transfer (FRET) biosensors are microscopy imaging tools tailored for the precise monitoring and detection of molecular dynamics within subcellular microenvironments. They are characterised by their ability to provide an outstanding combination of spatial and temporal resolutions in live-cell microscopy. In this review, we begin by tracing back on the historical development of genetically encoded FP labelling for detection in live cells, which lead us to the development of early biosensors and finally to the engineering of single-chain FRET-based biosensors that have become the state-of-the-art today. Ultimately, this review delves into the fundamental principles of FRET and the design strategies underpinning FRET-based biosensors, discusses their diverse applications and addresses the distinct challenges associated with their implementation. We place particular emphasis on single-chain FRET biosensors for the Rho family of guanosine triphosphate hydrolases (GTPases), pointing to their historical role in driving our understanding of the molecular dynamics of this important class of signalling proteins and revealing the intricate relationships and regulatory mechanisms that comprise Rho GTPase biology in living cells.

2.
Nature ; 626(7999): 635-642, 2024 Feb.
Article En | MEDLINE | ID: mdl-38297127

Type 2 diabetes mellitus is a major risk factor for hepatocellular carcinoma (HCC). Changes in extracellular matrix (ECM) mechanics contribute to cancer development1,2, and increased stiffness is known to promote HCC progression in cirrhotic conditions3,4. Type 2 diabetes mellitus is characterized by an accumulation of advanced glycation end-products (AGEs) in the ECM; however, how this affects HCC in non-cirrhotic conditions is unclear. Here we find that, in patients and animal models, AGEs promote changes in collagen architecture and enhance ECM viscoelasticity, with greater viscous dissipation and faster stress relaxation, but not changes in stiffness. High AGEs and viscoelasticity combined with oncogenic ß-catenin signalling promote HCC induction, whereas inhibiting AGE production, reconstituting the AGE clearance receptor AGER1 or breaking AGE-mediated collagen cross-links reduces viscoelasticity and HCC growth. Matrix analysis and computational modelling demonstrate that lower interconnectivity of AGE-bundled collagen matrix, marked by shorter fibre length and greater heterogeneity, enhances viscoelasticity. Mechanistically, animal studies and 3D cell cultures show that enhanced viscoelasticity promotes HCC cell proliferation and invasion through an integrin-ß1-tensin-1-YAP mechanotransductive pathway. These results reveal that AGE-mediated structural changes enhance ECM viscoelasticity, and that viscoelasticity can promote cancer progression in vivo, independent of stiffness.


Carcinoma, Hepatocellular , Disease Progression , Elasticity , Extracellular Matrix , Liver Cirrhosis , Liver Neoplasms , Animals , Humans , beta Catenin/metabolism , Carcinoma, Hepatocellular/complications , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Proliferation , Collagen/chemistry , Collagen/metabolism , Computer Simulation , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Extracellular Matrix/metabolism , Glycation End Products, Advanced/metabolism , Integrin beta1/metabolism , Liver Neoplasms/complications , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Neoplasm Invasiveness , Viscosity , YAP-Signaling Proteins/metabolism , Liver Cirrhosis/complications , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology
3.
Nat Commun ; 14(1): 8499, 2023 Dec 21.
Article En | MEDLINE | ID: mdl-38129387

Heterozygous deletions in the ANKS1B gene cause ANKS1B neurodevelopmental syndrome (ANDS), a rare genetic disease characterized by autism spectrum disorder (ASD), attention deficit/hyperactivity disorder, and speech and motor deficits. The ANKS1B gene encodes for AIDA-1, a protein that is enriched at neuronal synapses and regulates synaptic plasticity. Here we report an unexpected role for oligodendroglial deficits in ANDS pathophysiology. We show that Anks1b-deficient mouse models display deficits in oligodendrocyte maturation, myelination, and Rac1 function, and recapitulate white matter abnormalities observed in ANDS patients. Selective loss of Anks1b from the oligodendrocyte lineage, but not from neuronal populations, leads to deficits in social preference and sensory reactivity previously observed in a brain-wide Anks1b haploinsufficiency model. Furthermore, we find that clemastine, an antihistamine shown to increase oligodendrocyte precursor cell maturation and central nervous system myelination, rescues deficits in social preference in 7-month-old Anks1b-deficient mice. Our work shows that deficits in social behaviors present in ANDS may originate from abnormal Rac1 activity within oligodendrocytes.


Autism Spectrum Disorder , Animals , Humans , Infant , Mice , Autism Spectrum Disorder/genetics , Intracellular Signaling Peptides and Proteins , Neurons , Oligodendroglia , Social Behavior
4.
Nat Mater ; 2023 Nov 13.
Article En | MEDLINE | ID: mdl-37957268

Breast cancer becomes invasive when carcinoma cells invade through the basement membrane (BM)-a nanoporous layer of matrix that physically separates the primary tumour from the stroma. Single cells can invade through nanoporous three-dimensional matrices due to protease-mediated degradation or force-mediated widening of pores via invadopodial protrusions. However, how multiple cells collectively invade through the physiological BM, as they do during breast cancer progression, remains unclear. Here we developed a three-dimensional in vitro model of collective invasion of the BM during breast cancer. We show that cells utilize both proteases and forces-but not invadopodia-to breach the BM. Forces are generated from a combination of global cell volume expansion, which stretches the BM, and local contractile forces that act in the plane of the BM to breach it, allowing invasion. These results uncover a mechanism by which cells collectively interact to overcome a critical barrier to metastasis.

5.
Exp Cell Res ; 433(2): 113852, 2023 12 15.
Article En | MEDLINE | ID: mdl-37951335

In the study of tumorigenesis, the involvement of molecules within the extracellular matrix (ECM) is crucial. ADAMTSs (A Disintegrin and Metalloproteinase with Thrombospondin motifs), a group of secreted proteases known for their role in ECM remodeling, were primarily considered to be extracellular proteases. However, our research specifically detected ADAMTS-1, a member of this family, predominantly within the nucleus of mammary cells. Our main objective was to understand the mechanism of ADAMTS-1 translocation to the nucleus and its functional significance in this cellular compartment. Our investigation uncovered that nuclear ADAMTS-1 was present in cells exhibiting an epithelial phenotype, while cells of mesenchymal origin contained the protease in the cytoplasm. Moreover, disruption of ADAMTS-1 secretion, induced by Monensin treatment, resulted in its accumulation in the cytoplasm. Notably, our research indicated that alterations in the secretory pathways could influence the protease's compartmentalization. Additionally, experiments with conditioned medium from cells containing nuclear ADAMTS-1 demonstrated its internalization into the nucleus by HT-1080 cells and fibroblasts. Furthermore, heightened levels of ADAMTS-1 within the ECM reduced the migratory potential of mesenchymal cells. This highlights the potential significance of nuclear ADAMTS-1 as a critical component within the tumor microenvironment due to its functional activity in this specific cellular compartment.


ADAMTS1 Protein , Cell Movement , Cell Nucleus , Extracellular Matrix , Thrombospondins , Humans , ADAMTS1 Protein/genetics , ADAMTS1 Protein/metabolism , Carcinogenesis/metabolism , Endopeptidases/metabolism , Extracellular Matrix/metabolism , Fibroblasts/metabolism , Thrombospondins/metabolism , Tumor Microenvironment , Cell Nucleus/metabolism
6.
Biophys J ; 122(18): 3600-3610, 2023 09 19.
Article En | MEDLINE | ID: mdl-36523161

The microtubule (MT) cytoskeleton and its dynamics play an important role in cell migration. Depletion of the microtubule-severing enzyme Fidgetin-like 2 (FL2), a regulator of MT dynamics at the leading edge of migrating cells, leads to faster and more efficient cell migration. Here we examine how siRNA knockdown of FL2 increases cell motility. Förster resonance energy transfer biosensor studies shows that FL2 knockdown decreases activation of the p21 Rho GTPase, RhoA, and its activator GEF-H1. Immunofluorescence studies reveal that GEF-H1 is sequestered by the increased MT density resulting from FL2 depletion. Activation of the Rho GTPase, Rac1, however, does not change after FL2 knockdown. Furthermore, FL2 depletion leads to an increase in focal adhesion kinase activation at the leading edge, as shown by immunofluorescence studies, but no change in actin dynamics, as shown by fluorescence recovery after photobleaching. We believe these results expand our understanding of the role of MT dynamics in cell migration and offer new insights into RhoA and Rac1 regulation.


Microtubules , rhoA GTP-Binding Protein , Rho Guanine Nucleotide Exchange Factors/genetics , Rho Guanine Nucleotide Exchange Factors/metabolism , Microtubules/metabolism , Cell Movement , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism , Actins/metabolism , rho GTP-Binding Proteins/metabolism
7.
Eur J Cell Biol ; 101(1): 151197, 2022 01.
Article En | MEDLINE | ID: mdl-34958986

Metastasis remains the main challenge to overcome for treating ovarian cancers. In this study, we investigate the potential role of the Cdc42 GAP StarD13 in the modulation of cell motility, invasion in ovarian cancer cells. StarD13 depletion does not affect the 2D motility of ovarian cancer cells. More importantly, StarD13 inhibits matrix degradation, invadopodia formation and cell invasion through the inhibition of Cdc42. StarD13 does not localize to mature TKS4-labeled invadopodia that possess matrix degradation ability, while a Cdc42 FRET biosensor, detects Cdc42 activation in these invadopodia. In fact, StarD13 localization and Cdc42 activation appear mutually exclusive in invadopodial structures. Finally, for the first time we uncover a potential role of Cdc42 in the direct recruitment of TKS4 to invadopodia. This study emphasizes the specific role of StarD13 as a narrow spatial regulator of Cdc42, inhibiting invasion, suggesting the suitability of StarD13 for targeted therapy.


Adenocarcinoma , GTPase-Activating Proteins/genetics , Podosomes , Tumor Suppressor Proteins/genetics , cdc42 GTP-Binding Protein/genetics , Cell Line, Tumor , Humans , Neoplasm Invasiveness
8.
Exp Cell Res ; 410(2): 112939, 2022 01 15.
Article En | MEDLINE | ID: mdl-34813733

One of the hallmarks of cancer cells is their exceptional ability to migrate within the extracellular matrix (ECM) for gaining access to the circulatory system, a critical step of cancer metastasis. RhoA, a small GTPase, is known to be a key molecular switch that toggles between actomyosin contractility and lamellipodial protrusion during cell migration. Current understanding of RhoA activity in cell migration has been largely derived from studies of cells plated on a two-dimensional (2D) substrate using a FRET biosensor. There has been increasing evidence that cells behave differently in a more physiologically relevant three-dimensional (3D) environment. However, studies of RhoA activities in 3D have been hindered by low signal-to-noise ratio in fluorescence imaging. In this paper, we present a a machine learning-assisted FRET technique to follow the spatiotemporal dynamics of RhoA activities of single breast tumor cells (MDA-MB-231) migrating in a 3D as well as a 2D environment. We found that RhoA activity is more polarized along the long axis of the cell for single cells migrating on 2D fibronectin-coated glass versus those embedded in 3D collagen matrices. In particular, RhoA activities of cells in 2D exhibit a distinct front-to-back and back-to-front movement during migration in contrast to those in 3D. Finally, regardless of dimensionality, RhoA polarization is found to be moderately correlated with cell shape.


Breast Neoplasms/metabolism , Fluorescence Resonance Energy Transfer , Machine Learning , rhoA GTP-Binding Protein/metabolism , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement , Cell Polarity , Cell Shape , Collagen/metabolism , Female , Humans , Rats , Time Factors
10.
Commun Biol ; 4(1): 1091, 2021 09 16.
Article En | MEDLINE | ID: mdl-34531530

During breast cancer metastasis, cancer cell invasion is driven by actin-rich protrusions called invadopodia, which mediate the extracellular matrix degradation required for the success of the invasive cascade. In this study, we demonstrate that TC10, a member of a Cdc42 subfamily of p21 small GTPases, regulates the membrane type 1 matrix metalloproteinase (MT1-MMP)-driven extracellular matrix degradation at invadopodia. We show that TC10 is required for the plasma membrane surface exposure of MT1-MMP at these structures. By utilizing our Förster resonance energy transfer (FRET) biosensor, we demonstrate the p190RhoGAP-dependent regulation of spatiotemporal TC10 activity at invadopodia. We identified a pathway that regulates invadopodia-associated TC10 activity and function through the activation of p190RhoGAP and the downstream interacting effector Exo70. Our findings reveal the role of a previously unknown regulator of vesicular fusion at invadopodia, TC10 GTPase, in breast cancer invasion and metastasis.


Breast Neoplasms/pathology , Mammary Neoplasms, Animal/pathology , Neoplasm Invasiveness/genetics , Neoplasm Metastasis/genetics , rho GTP-Binding Proteins/genetics , Adenocarcinoma , Animals , Breast Neoplasms/secondary , Cell Line, Tumor , Female , Humans , Mammary Neoplasms, Animal/secondary , Matrix Metalloproteinase 14/genetics , Matrix Metalloproteinase 14/metabolism , Mice, SCID , Rats , rho GTP-Binding Proteins/metabolism
11.
Methods Mol Biol ; 2350: 43-68, 2021.
Article En | MEDLINE | ID: mdl-34331278

Förster resonance energy transfer (FRET) biosensors are popular and useful for directly observing cellular signaling pathways in living cells. Until recently, multiplex imaging of genetically encoded FRET biosensors to simultaneously monitor several protein activities in one cell was limited due to a lack of spectrally compatible FRET pair of fluorescent proteins. With the recent development of miRFP series of near-infrared (NIR) fluorescent proteins, we are now able to extend the spectrum of FRET biosensors beyond blue-green-yellow into NIR. These new NIR FRET biosensors enable direct multiplex imaging together with commonly used cyan-yellow FRET biosensors. We describe herein a method to produce cell lines harboring two compatible FRET biosensors. We will then discuss how to directly multiplex-image these FRET biosensors in living cells. The approaches described herein are generally applicable to any combinations of genetically encoded, ratiometric FRET biosensors utilizing the cyan-yellow and NIR fluorescence.


Biosensing Techniques/methods , Fluorescent Antibody Technique/methods , Signal Transduction , rho GTP-Binding Proteins/metabolism , Animals , Carrier Proteins , Cell Line , Enzyme Activation , Fluorescence Resonance Energy Transfer/methods , Genes, Reporter , Mice , Protein Binding , rho GTP-Binding Proteins/genetics
12.
Cell Signal ; 77: 109827, 2021 01.
Article En | MEDLINE | ID: mdl-33161094

ADAMTSs (A Disintegrin And Metalloproteinase with ThromboSpondin motifs) are secreted proteases dependent on Zn2+/Ca2+, involved in physiological and pathological processes and are part of the extracellular matrix (ECM). Here, we investigated if ADAMTS-1 is required for invasion and migration of cells and the possible mechanism involved. In order to test ADAMTS-1's role in ovarian cancer cells (CHO, NIH-OVCAR-3 and ES2) and NIH-3 T3 fibroblasts, we modified the levels of ADAMTS-1 and compared those to parental. Cells exposed to ADAMTS-1-enriched medium exhibited a decline in cell migration and invasion when compared to controls with or without a functional metalloproteinase domain. The opposite was observed in cells when ADAMTS-1 was deleted via the CRISPR/Cas9 approach. The decline in ADAMTS-1 levels enhanced the phosphorylated form of Src and FAK. We also evaluated the activities of cellular Rho GTPases from cell lysates using the GLISA® kit. The Cdc42-GTP signal was significantly increased in the CRISPR ADAMTS-1 ES-2 cells. By a Förster resonance energy transfer (FRET) biosensor for Cdc42 activity in ES-2 cells we demonstrated that Cdc42 activity was strongly polarized at the leading edge of migrating cells with ADAMTS-1 deletion, compared to the wild type cells. As conclusion, ADAMTS-1 inhibits proliferation, polarization and migration.


ADAMTS1 Protein/metabolism , cdc42 GTP-Binding Protein/metabolism , ADAMTS1 Protein/deficiency , ADAMTS1 Protein/genetics , CRISPR-Cas Systems/genetics , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival , Female , Focal Adhesion Kinase 1/metabolism , Hepatocyte Growth Factor/pharmacology , Humans , Phosphorylation , RNA, Guide, Kinetoplastida/metabolism , Signal Transduction , src-Family Kinases/metabolism
13.
J Cell Biol ; 219(11)2020 11 02.
Article En | MEDLINE | ID: mdl-33007084

In neurons, dendrites form the major sites of information receipt and integration. It is thus vital that, during development, the dendritic arbor is adequately formed to enable proper neural circuit formation and function. While several known processes shape the arbor, little is known of those that govern dendrite branching versus extension. Here, we report a new mechanism instructing dendrites to branch versus extend. In it, glutamate signaling activates mGluR5 receptors to promote Ckd5-mediated phosphorylation of the C-terminal PDZ-binding motif of delta-catenin. The phosphorylation state of this motif determines delta-catenin's ability to bind either Pdlim5 or Magi1. Whereas the delta:Pdlim5 complex enhances dendrite branching at the expense of elongation, the delta:Magi1 complex instead promotes lengthening. Our data suggest that these complexes affect dendrite development by differentially regulating the small-GTPase RhoA and actin-associated protein Cortactin. We thus reveal a "phospho-switch" within delta-catenin, subject to a glutamate-mediated signaling pathway, that assists in balancing the branching versus extension of dendrites during neural development.


Catenins/metabolism , Dendrites/physiology , Guanylate Kinases/metabolism , Hippocampus/cytology , LIM Domain Proteins/metabolism , Neurogenesis , Neurons/cytology , Animals , Catenins/genetics , Guanylate Kinases/genetics , HEK293 Cells , Hippocampus/metabolism , Humans , LIM Domain Proteins/genetics , Neurons/metabolism , Phosphorylation , Rats , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism , Delta Catenin
14.
Cell Commun Signal ; 18(1): 144, 2020 09 08.
Article En | MEDLINE | ID: mdl-32900380

BACKGROUND: Lung cancer is the second most commonly occurring cancer. The ability to metastasize and spread to distant locations renders the tumor more aggressive. Members of the Rho subfamily of small GTP-binding proteins (GTPases) play a central role in the regulation of the actin cytoskeleton and in cancer cell migration and metastasis. In this study we investigated the role of the RhoA/Cdc42 GAP, StarD13, a previously described tumor suppressor, in malignancy, migration and invasion of the lung cancer cells A549. METHODS: We knocked down StarD13 expression in A549 lung cancer cells and tested the effect on cell migration and invadopodia formation using time lapse imaging and invasion assays. We also performed rescue experiments to determine the signaling pathways downstream of StarD13 and transfected the cells with FRET biosensors for RhoGTPases to identify the proteins involved in invadopodia formation. RESULTS: We observed a decrease in the level of expression of StarD13 in lung tumor tissues compared to normal lung tissues through immunohistochemistry. StarD13 also showed a lower expression in the lung adenocarcinoma cell line A549 compared to normal lung cells, WI38. In addition, the depletion of StarD13 increased cell proliferation and viability in WI38 and A549 cells, suggesting that StarD13 might potentially be a tumor suppressor in lung cancer. The depletion of StarD13, however, inhibited cell motility, conversely demonstrating a positive regulatory role in cell migration. This was potentially due to the constitutive activation of RhoA detected by pull down and FRET assays. Surprisingly, StarD13 suppressed cell invasion by inhibiting Cdc42-mediated invadopodia formation. Indeed, TKS4 staining and invadopodia assay revealed that StarD13 depletion increased Cdc42 activation as well as invadopodia formation and matrix degradation. Normal lung cells depleted of StarD13 also produced invadopodia, otherwise a unique hallmark of invasive cancer cells. Cdc42 knock down mimicked the effects of StarD13, while overexpression of a constitutively active Cdc42 mimicked the effects of its depletion. Finally, immunostaining and FRET analysis revealed the absence of StarD13 in invadopodia as compared to Cdc42, which was activated in invadopodia at the sites of matrix degradation. CONCLUSION: In conclusion, StarD13 plays distinct roles in lung cancer cell migration and invasion through its differential regulation of Rho GTPases. Video abstract.


Adenocarcinoma of Lung/metabolism , GTPase-Activating Proteins/metabolism , Lung Neoplasms/metabolism , Podosomes/metabolism , Tumor Suppressor Proteins/metabolism , rho GTP-Binding Proteins/metabolism , A549 Cells , Adenocarcinoma of Lung/pathology , Cell Movement , Humans , Lung Neoplasms/pathology , Neoplasm Invasiveness/pathology , Podosomes/pathology
15.
Nat Commun ; 11(1): 605, 2020 01 30.
Article En | MEDLINE | ID: mdl-32001718

Techniques of protein regulation, such as conditional gene expression, RNA interference, knock-in and knock-out, lack sufficient spatiotemporal accuracy, while optogenetic tools suffer from non-physiological response due to overexpression artifacts. Here we present a near-infrared light-activatable optogenetic system, which combines the specificity and orthogonality of intrabodies with the spatiotemporal precision of optogenetics. We engineer optically-controlled intrabodies to regulate genomically expressed protein targets and validate the possibility to further multiplex protein regulation via dual-wavelength optogenetic control. We apply this system to regulate cytoskeletal and enzymatic functions of two non-tagged endogenous proteins, actin and RAS GTPase, involved in complex functional networks sensitive to perturbations. The optogenetically-enhanced intrabodies allow fast and reversible regulation of both proteins, as well as simultaneous monitoring of RAS signaling with visible-light biosensors, enabling all-optical approach. Growing number of intrabodies should make their incorporation into optogenetic tools the versatile technology to regulate endogenous targets.


Optogenetics , Proteins/metabolism , Actins/metabolism , Cell Movement/radiation effects , Cell Nucleus/metabolism , Cell Nucleus/radiation effects , GTP Phosphohydrolases/metabolism , HeLa Cells , Humans , Light , Protein Engineering
16.
Methods Mol Biol ; 2108: 281-293, 2020.
Article En | MEDLINE | ID: mdl-31939189

Genetically encoded optogenetic tools are increasingly popular and useful for perturbing signaling pathways with high spatial and temporal resolution in living cells. Here, we show basic procedures employed to implement optogenetics of Rho GTPases in a macrophage cell line. Methods described here are generally applicable to other genetically encoded optogenetic tools utilizing the blue-green spectrum of light for activation, designed for specific proteins and enzymatic targets important for immune cell functions.


Light , Macrophages/metabolism , Macrophages/radiation effects , Optogenetics , rho GTP-Binding Proteins/metabolism , Animals , Cell Line , DNA-Binding Proteins/metabolism , Enzyme Activation , Gene Expression , Genes, Reporter , Mice , Microscopy, Fluorescence , Optogenetics/methods , Protein Binding , RAW 264.7 Cells , Transfection
17.
J Mol Endocrinol ; 2018 Nov 01.
Article En | MEDLINE | ID: mdl-30407917

Key features for progression to pancreatic ß-cell failure and disease are loss of glucose responsiveness and an increased ratio of secreted proinsulin to insulin. Proinsulin and insulin are stored in secretory granules (SGs) and the fine-tuning of hormone output requires signal mediated recruitment of select SG populations according to intracellular location and age. The GTPase Rac1 coordinates multiple signaling pathways that specify SG release and Rac1 activity is controlled in part by GDP/GTP exchange factors (GEFs). To explore the function of two large multidomain GEFs, Kalirin and Trio in ß-cells, we manipulated their Rac1-specific GEF1 domain activity by using small molecule inhibitors and by genetically ablating Kalirin. We examined age related secretory granule behavior employing radiolabeling protocols. Loss of Kalirin/Trio function attenuated radioactive proinsulin release by reducing constitutive-like secretion and exocytosis of 2-hour old granules. At later chase times or at steady state, Kalirin/Trio manipulations decreased glucose stimulated insulin output. Finally, use of a Rac1 FRET biosensor with cultured ß-cell lines, demonstrated that Kalirin/Trio GEF1 activity was required for normal rearrangement of Rac1 to the plasma membrane in response to glucose. Rac1 activation can be evoked by both glucose metabolism and signaling through the incretin glucagon-like peptide 1 (GLP-1) receptor. GLP-1 addition restored Rac1 localization/activity and insulin secretion in the absence of Kalirin, thereby assigning Kalirin's participation to stimulatory glucose signaling.

18.
Nat Commun ; 9(1): 4144, 2018 10 08.
Article En | MEDLINE | ID: mdl-30297715

Studies of cancer cell migration have found two modes: one that is protease-independent, requiring micron-sized pores or channels for cells to squeeze through, and one that is protease-dependent, relevant for confining nanoporous matrices such as basement membranes (BMs). However, many extracellular matrices exhibit viscoelasticity and mechanical plasticity, irreversibly deforming in response to force, so that pore size may be malleable. Here we report the impact of matrix plasticity on migration. We develop nanoporous and BM ligand-presenting interpenetrating network (IPN) hydrogels in which plasticity could be modulated independent of stiffness. Strikingly, cells in high plasticity IPNs carry out protease-independent migration through the IPNs. Mechanistically, cells in high plasticity IPNs extend invadopodia protrusions to mechanically and plastically open up micron-sized channels and then migrate through them. These findings uncover a new mode of protease-independent migration, in which cells can migrate through confining matrix if it exhibits sufficient mechanical plasticity.


Breast Neoplasms/metabolism , Cell Movement , Extracellular Matrix/metabolism , Hydrogels/metabolism , Tumor Microenvironment , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Extracellular Matrix/chemistry , Female , Humans , Hydrogels/chemistry , Mechanical Phenomena , Mice, Nude , Transplantation, Heterologous
19.
J Cell Biol ; 217(11): 3873-3885, 2018 11 05.
Article En | MEDLINE | ID: mdl-30150290

Pathogen-mediated activation of macrophages arms innate immune responses that include enhanced surface ruffling and macropinocytosis for environmental sampling and receptor internalization and signaling. Activation of macrophages with bacterial lipopolysaccharide (LPS) generates prominent dorsal ruffles, which are precursors for macropinosomes. Very rapid, high-resolution imaging of live macrophages with lattice light sheet microscopy (LLSM) reveals new features and actions of dorsal ruffles, which redefine the process of macropinosome formation and closure. We offer a new model in which ruffles are erected and supported by F-actin tent poles that cross over and twist to constrict the forming macropinosomes. This process allows for formation of large macropinosomes induced by LPS. We further describe the enrichment of active Rab13 on tent pole ruffles and show that CRISPR deletion of Rab13 results in aberrant tent pole ruffles and blocks the formation of large LPS-induced macropinosomes. Based on the exquisite temporal and spatial resolution of LLSM, we can redefine the ruffling and macropinosome processes that underpin innate immune responses.


Actins/metabolism , Cell Membrane Structures/metabolism , Macrophages/metabolism , rab GTP-Binding Proteins/metabolism , Actins/genetics , Animals , CRISPR-Cas Systems , Cell Membrane Structures/genetics , Gene Deletion , Lipopolysaccharides/pharmacology , Mice , RAW 264.7 Cells , rab GTP-Binding Proteins/genetics
20.
Methods Mol Biol ; 1821: 87-106, 2018.
Article En | MEDLINE | ID: mdl-30062407

Genetically encoded FRET-based biosensors are increasingly popular and useful tools for examining signaling pathways with high spatial and temporal resolution in living cells. Here, we show basic techniques used to characterize and to validate single-chain, genetically encoded Förster resonance energy transfer (FRET) biosensors of the Rho GTPase-family proteins. Methods described here are generally applicable to other genetically encoded FRET-based biosensors by modifying the tested conditions to include additional/different regulators and inhibitors, as appropriate for the specific protein of interest.


Biosensing Techniques/methods , Fluorescence Resonance Energy Transfer/methods , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/metabolism , Animals , Mice , RAW 264.7 Cells
...