Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22
2.
Nat Commun ; 12(1): 970, 2021 02 12.
Article En | MEDLINE | ID: mdl-33579919

Even distinct cancer types share biological hallmarks. Here, we investigate polygenic risk score (PRS)-specific pleiotropy across 16 cancers in European ancestry individuals from the Genetic Epidemiology Research on Adult Health and Aging cohort (16,012 cases, 50,552 controls) and UK Biobank (48,969 cases, 359,802 controls). Within cohorts, each PRS is evaluated in multivariable logistic regression models against all other cancer types. Results are then meta-analyzed across cohorts. Ten positive and one inverse cross-cancer associations are found after multiple testing correction. Two pairs show bidirectional associations; the melanoma PRS is positively associated with oral cavity/pharyngeal cancer and vice versa, whereas the lung cancer PRS is positively associated with oral cavity/pharyngeal cancer, and the oral cavity/pharyngeal cancer PRS is inversely associated with lung cancer. Overall, we validate known, and uncover previously unreported, patterns of pleiotropy that have the potential to inform investigations of risk prediction, shared etiology, and precision cancer prevention strategies.


Lung Neoplasms/classification , Lung Neoplasms/genetics , Molecular Epidemiology , Adult , Aged , Biomarkers, Tumor/genetics , Female , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Genotype , Humans , Logistic Models , Male , Middle Aged , Risk Factors
3.
Nature ; 586(7831): 749-756, 2020 10.
Article En | MEDLINE | ID: mdl-33087929

The UK Biobank is a prospective study of 502,543 individuals, combining extensive phenotypic and genotypic data with streamlined access for researchers around the world1. Here we describe the release of exome-sequence data for the first 49,960 study participants, revealing approximately 4 million coding variants (of which around 98.6% have a frequency of less than 1%). The data include 198,269 autosomal predicted loss-of-function (LOF) variants, a more than 14-fold increase compared to the imputed sequence. Nearly all genes (more than 97%) had at least one carrier with a LOF variant, and most genes (more than 69%) had at least ten carriers with a LOF variant. We illustrate the power of characterizing LOF variants in this population through association analyses across 1,730 phenotypes. In addition to replicating established associations, we found novel LOF variants with large effects on disease traits, including PIEZO1 on varicose veins, COL6A1 on corneal resistance, MEPE on bone density, and IQGAP2 and GMPR on blood cell traits. We further demonstrate the value of exome sequencing by surveying the prevalence of pathogenic variants of clinical importance, and show that 2% of this population has a medically actionable variant. Furthermore, we characterize the penetrance of cancer in carriers of pathogenic BRCA1 and BRCA2 variants. Exome sequences from the first 49,960 participants highlight the promise of genome sequencing in large population-based studies and are now accessible to the scientific community.


Databases, Genetic , Exome Sequencing , Exome/genetics , Loss of Function Mutation/genetics , Phenotype , Aged , Bone Density/genetics , Collagen Type VI/genetics , Demography , Female , Genes, BRCA1 , Genes, BRCA2 , Genotype , Humans , Ion Channels/genetics , Male , Middle Aged , Neoplasms/genetics , Penetrance , Peptide Fragments/genetics , United Kingdom , Varicose Veins/genetics , ras GTPase-Activating Proteins/genetics
4.
Nat Commun ; 11(1): 4423, 2020 09 04.
Article En | MEDLINE | ID: mdl-32887889

Deciphering the shared genetic basis of distinct cancers has the potential to elucidate carcinogenic mechanisms and inform broadly applicable risk assessment efforts. Here, we undertake genome-wide association studies (GWAS) and comprehensive evaluations of heritability and pleiotropy across 18 cancer types in two large, population-based cohorts: the UK Biobank (408,786 European ancestry individuals; 48,961 cancer cases) and the Kaiser Permanente Genetic Epidemiology Research on Adult Health and Aging cohorts (66,526 European ancestry individuals; 16,001 cancer cases). The GWAS detect 21 genome-wide significant associations independent of previously reported results. Investigations of pleiotropy identify 12 cancer pairs exhibiting either positive or negative genetic correlations; 25 pleiotropic loci; and 100 independent pleiotropic variants, many of which are regulatory elements and/or influence cross-tissue gene expression. Our findings demonstrate widespread pleiotropy and offer further insight into the complex genetic architecture of cross-cancer susceptibility.


Carcinogenesis/genetics , Neoplasms/genetics , Adult , Aged , Case-Control Studies , Female , Genetic Pleiotropy , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , Middle Aged , Neoplasms/epidemiology , Polymorphism, Single Nucleotide , Risk Assessment , Risk Factors , White People/genetics
5.
PLoS Genet ; 16(6): e1008725, 2020 06.
Article En | MEDLINE | ID: mdl-32603359

Risk factors that contribute to inter-individual differences in the age-of-onset of allergic diseases are poorly understood. The aim of this study was to identify genetic risk variants associated with the age at which symptoms of allergic disease first develop, considering information from asthma, hay fever and eczema. Self-reported age-of-onset information was available for 117,130 genotyped individuals of European ancestry from the UK Biobank study. For each individual, we identified the earliest age at which asthma, hay fever and/or eczema was first diagnosed and performed a genome-wide association study (GWAS) of this combined age-of-onset phenotype. We identified 50 variants with a significant independent association (P<3x10-8) with age-of-onset. Forty-five variants had comparable effects on the onset of the three individual diseases and 38 were also associated with allergic disease case-control status in an independent study (n = 222,484). We observed a strong negative genetic correlation between age-of-onset and case-control status of allergic disease (rg = -0.63, P = 4.5x10-61), indicating that cases with early disease onset have a greater burden of allergy risk alleles than those with late disease onset. Subsequently, a multivariate GWAS of age-of-onset and case-control status identified a further 26 associations that were missed by the univariate analyses of age-of-onset or case-control status only. Collectively, of the 76 variants identified, 18 represent novel associations for allergic disease. We identified 81 likely target genes of the 76 associated variants based on information from expression quantitative trait loci (eQTL) and non-synonymous variants, of which we highlight ADAM15, FOSL2, TRIM8, BMPR2, CD200R1, PRKCQ, NOD2, SMAD4, ABCA7 and UBE2L3. Our results support the notion that early and late onset allergic disease have partly distinct genetic architectures, potentially explaining known differences in pathophysiology between individuals.


Asthma/genetics , Eczema/genetics , Polymorphism, Single Nucleotide , Rhinitis, Allergic, Seasonal/genetics , Adolescent , Adult , Age of Onset , Aged , Asthma/pathology , Child , Eczema/pathology , Female , Genetic Loci , Genome-Wide Association Study/methods , Humans , Male , Middle Aged , Rhinitis, Allergic, Seasonal/pathology
7.
Nat Commun ; 10(1): 3107, 2019 07 15.
Article En | MEDLINE | ID: mdl-31308362

Here we train cis-regulatory models of prostate tissue gene expression and impute expression transcriptome-wide for 233,955 European ancestry men (14,616 prostate cancer (PrCa) cases, 219,339 controls) from two large cohorts. Among 12,014 genes evaluated in the UK Biobank, we identify 38 associated with PrCa, many replicating in the Kaiser Permanente RPGEH. We report the association of elevated TMPRSS2 expression with increased PrCa risk (independent of a previously-reported risk variant) and with increased tumoral expression of the TMPRSS2:ERG fusion-oncogene in The Cancer Genome Atlas, suggesting a novel germline-somatic interaction mechanism. Three novel genes, HOXA4, KLK1, and TIMM23, additionally replicate in the RPGEH cohort. Furthermore, 4 genes, MSMB, NCOA4, PCAT1, and PPP1R14A, are associated with PrCa in a trans-ethnic meta-analysis (N = 9117). Many genes exhibit evidence for allele-specific transcriptional activation by PrCa master-regulators (including androgen receptor) in Position Weight Matrix, Chip-Seq, and Hi-C experimental data, suggesting common regulatory mechanisms for the associated genes.


Prostate/metabolism , Prostatic Neoplasms/genetics , Cohort Studies , Gene Expression Profiling , Humans , Male , Models, Genetic , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Transcriptome , White People
9.
Nat Genet ; 51(3): 481-493, 2019 03.
Article En | MEDLINE | ID: mdl-30804560

Reduced lung function predicts mortality and is key to the diagnosis of chronic obstructive pulmonary disease (COPD). In a genome-wide association study in 400,102 individuals of European ancestry, we define 279 lung function signals, 139 of which are new. In combination, these variants strongly predict COPD in independent populations. Furthermore, the combined effect of these variants showed generalizability across smokers and never smokers, and across ancestral groups. We highlight biological pathways, known and potential drug targets for COPD and, in phenome-wide association studies, autoimmune-related and other pleiotropic effects of lung function-associated variants. This new genetic evidence has potential to improve future preventive and therapeutic strategies for COPD.


Genetic Predisposition to Disease/genetics , Lung/physiopathology , Pulmonary Disease, Chronic Obstructive/genetics , Aged , Aged, 80 and over , Case-Control Studies , Female , Genome-Wide Association Study/methods , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Risk Factors , Smoking/genetics
10.
Nat Genet ; 51(2): 230-236, 2019 02.
Article En | MEDLINE | ID: mdl-30664745

Osteoarthritis is the most common musculoskeletal disease and the leading cause of disability globally. Here, we performed a genome-wide association study for osteoarthritis (77,052 cases and 378,169 controls), analyzing four phenotypes: knee osteoarthritis, hip osteoarthritis, knee and/or hip osteoarthritis, and any osteoarthritis. We discovered 64 signals, 52 of them novel, more than doubling the number of established disease loci. Six signals fine-mapped to a single variant. We identified putative effector genes by integrating expression quantitative trait loci (eQTL) colocalization, fine-mapping, and human rare-disease, animal-model, and osteoarthritis tissue expression data. We found enrichment for genes underlying monogenic forms of bone development diseases, and for the collagen formation and extracellular matrix organization biological pathways. Ten of the likely effector genes, including TGFB1 (transforming growth factor beta 1), FGF18 (fibroblast growth factor 18), CTSK (cathepsin K), and IL11 (interleukin 11), have therapeutics approved or in clinical trials, with mechanisms of action supportive of evaluation for efficacy in osteoarthritis.


Genetic Predisposition to Disease/genetics , Osteoarthritis, Hip/genetics , Adult , Aged , Biological Specimen Banks , Case-Control Studies , Female , Genome-Wide Association Study/methods , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , United Kingdom
11.
J Allergy Clin Immunol ; 143(2): 691-699, 2019 02.
Article En | MEDLINE | ID: mdl-29679657

BACKGROUND: A recent genome-wide association study (GWAS) identified 99 loci that contain genetic risk variants shared between asthma, hay fever, and eczema. Many more risk loci shared between these common allergic diseases remain to be discovered, which could point to new therapeutic opportunities. OBJECTIVE: We sought to identify novel risk loci shared between asthma, hay fever, and eczema by applying a gene-based test of association to results from a published GWAS that included data from 360,838 subjects. METHODS: We used approximate conditional analysis to adjust the results from the published GWAS for the effects of the top risk variants identified in that study. We then analyzed the adjusted GWAS results with the EUGENE gene-based approach, which combines evidence for association with disease risk across regulatory variants identified in different tissues. Novel gene-based associations were followed up in an independent sample of 233,898 subjects from the UK Biobank study. RESULTS: Of the 19,432 genes tested, 30 had a significant gene-based association at a Bonferroni-corrected P value of 2.5 × 10-6. Of these, 20 were also significantly associated (P < .05/30 = .0016) with disease risk in the replication sample, including 19 that were located in 11 loci not reported to contain allergy risk variants in previous GWASs. Among these were 9 genes with a known function that is directly relevant to allergic disease: FOSL2, VPRBP, IPCEF1, PRR5L, NCF4, APOBR, IL27, ATXN2L, and LAT. For 4 genes (eg, ATXN2L), a genetically determined decrease in gene expression was associated with decreased allergy risk, and therefore drugs that inhibit gene expression or function are predicted to ameliorate disease symptoms. The opposite directional effect was observed for 14 genes, including IL27, a cytokine known to suppress TH2 responses. CONCLUSION: Using a gene-based approach, we identified 11 risk loci for allergic disease that were not reported in previous GWASs. Functional studies that investigate the contribution of the 19 associated genes to the pathophysiology of allergic disease and assess their therapeutic potential are warranted.


Asthma/genetics , Eczema/genetics , Genotype , Hypersensitivity/genetics , Rhinitis, Allergic, Seasonal/genetics , Fos-Related Antigen-2/genetics , Gene Frequency , Genetic Association Studies , Genetic Loci/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Interleukin-27/genetics , Polymorphism, Single Nucleotide , Risk , Th1-Th2 Balance/genetics
12.
Cancer Epidemiol Biomarkers Prev ; 27(1): 75-85, 2018 01.
Article En | MEDLINE | ID: mdl-29150481

Background: There exists compelling evidence that some genetic variants are associated with the risk of multiple cancer sites (i.e., pleiotropy). However, the biological mechanisms through which the pleiotropic variants operate are unclear.Methods: We obtained all cancer risk associations from the National Human Genome Research Institute-European Bioinformatics Institute GWAS Catalog, and correlated cancer risk variants were clustered into groups. Pleiotropic variant groups and genes were functionally annotated. Associations of pleiotropic cancer risk variants with noncancer traits were also obtained.Results: We identified 1,431 associations between variants and cancer risk, comprised of 989 unique variants associated with 27 unique cancer sites. We found 20 pleiotropic variant groups (2.1%) composed of 33 variants (3.3%), including novel pleiotropic variants rs3777204 and rs56219066 located in the ELL2 gene. Relative to single-cancer risk variants, pleiotropic variants were more likely to be in genes (89.0% vs. 65.3%, P = 2.2 × 10-16), and to have somewhat larger risk allele frequencies (median RAF = 0.49 versus 0.39, P = 0.046). The 27 genes to which the pleiotropic variants mapped were suggestive for enrichment in response to radiation and hypoxia, alpha-linolenic acid metabolism, cell cycle, and extension of telomeres. In addition, we observed that 8 of 33 pleiotropic cancer risk variants were associated with 16 traits other than cancer.Conclusions: This study identified and functionally characterized genetic variants showing pleiotropy for cancer risk.Impact: Our findings suggest biological pathways common to different cancers and other diseases, and provide a basis for the study of genetic testing for multiple cancers and repurposing cancer treatments. Cancer Epidemiol Biomarkers Prev; 27(1); 75-85. ©2017 AACR.


Genetic Pleiotropy , Neoplasms/genetics , Biomarkers, Tumor/genetics , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , Polymorphism, Single Nucleotide , Risk Factors
13.
Nat Genet ; 49(12): 1752-1757, 2017 Dec.
Article En | MEDLINE | ID: mdl-29083406

Asthma, hay fever (or allergic rhinitis) and eczema (or atopic dermatitis) often coexist in the same individuals, partly because of a shared genetic origin. To identify shared risk variants, we performed a genome-wide association study (GWAS; n = 360,838) of a broad allergic disease phenotype that considers the presence of any one of these three diseases. We identified 136 independent risk variants (P < 3 × 10-8), including 73 not previously reported, which implicate 132 nearby genes in allergic disease pathophysiology. Disease-specific effects were detected for only six variants, confirming that most represent shared risk factors. Tissue-specific heritability and biological process enrichment analyses suggest that shared risk variants influence lymphocyte-mediated immunity. Six target genes provide an opportunity for drug repositioning, while for 36 genes CpG methylation was found to influence transcription independently of genetic effects. Asthma, hay fever and eczema partly coexist because they share many genetic risk variants that dysregulate the expression of immune-related genes.


Asthma/genetics , Eczema/genetics , Genetic Predisposition to Disease/genetics , Hypersensitivity/genetics , Rhinitis, Allergic, Seasonal/genetics , Genome-Wide Association Study/methods , Humans , Phenotype , Polymorphism, Single Nucleotide , Risk Factors
14.
PLoS Genet ; 13(3): e1006690, 2017 Mar.
Article En | MEDLINE | ID: mdl-28362817

Breast cancer is the most common solid organ malignancy and the most frequent cause of cancer death among women worldwide. Previous research has yielded insights into its genetic etiology, but there remains a gap in the understanding of genetic factors that contribute to risk, and particularly in the biological mechanisms by which genetic variation modulates risk. The National Cancer Institute's "Up for a Challenge" (U4C) competition provided an opportunity to further elucidate the genetic basis of the disease. Our group leveraged the seven datasets made available by the U4C organizers and data from the publicly available UK Biobank cohort to examine associations between imputed gene expression and breast cancer risk. In particular, we used reference datasets describing the breast tissue and whole blood transcriptomes to impute expression levels in breast cancer cases and controls. In trans-ethnic meta-analyses of U4C and UK Biobank data, we found significant associations between breast cancer risk and the expression of RCCD1 (joint p-value: 3.6x10-06) and DHODH (p-value: 7.1x10-06) in breast tissue, as well as a suggestive association for ANKLE1 (p-value: 9.3x10-05). Expression of RCCD1 in whole blood was also suggestively associated with disease risk (p-value: 1.2x10-05), as were expression of ACAP1 (p-value: 1.9x10-05) and LRRC25 (p-value: 5.2x10-05). While genome-wide association studies (GWAS) have implicated RCCD1 and ANKLE1 in breast cancer risk, they have not identified the remaining three genes. Among the genetic variants that contributed to the predicted expression of the five genes, we found 23 nominally (p-value < 0.05) associated with breast cancer risk, among which 15 are not in high linkage disequilibrium with risk variants previously identified by GWAS. In summary, we used a transcriptome-based approach to investigate the genetic underpinnings of breast carcinogenesis. This approach provided an avenue for deciphering the functional relevance of genes and genetic variants involved in breast cancer.


Breast Neoplasms/genetics , Carrier Proteins/genetics , GTPase-Activating Proteins/genetics , Genetic Predisposition to Disease , Membrane Proteins/genetics , Quantitative Trait Loci/genetics , Breast/metabolism , Breast/pathology , Breast Neoplasms/blood , Breast Neoplasms/pathology , Carrier Proteins/blood , Endonucleases/blood , Endonucleases/genetics , Ethnicity , Female , GTPase-Activating Proteins/blood , Genome-Wide Association Study , Humans , Membrane Proteins/blood , Polymorphism, Single Nucleotide , Risk Factors , Transcriptome/genetics
15.
Invest Ophthalmol Vis Sci ; 57(4): 2225-31, 2016 Apr 01.
Article En | MEDLINE | ID: mdl-27116550

PURPOSE: Age-related macular degeneration is a common form of vision loss affecting older adults. The etiology of AMD is multifactorial and is influenced by environmental and genetic risk factors. In this study, we examine how 19 common risk variants contribute to drusen progression, a hallmark of AMD pathogenesis. METHODS: Exome chip data was made available through the International AMD Genomics Consortium (IAMDGC). Drusen quantification was carried out with color fundus photographs using an automated drusen detection and quantification algorithm. A genetic risk score (GRS) was calculated per subject by summing risk allele counts at 19 common genetic risk variants weighted by their respective effect sizes. Pathway analysis of drusen progression was carried out with the software package Pathway Analysis by Randomization Incorporating Structure. RESULTS: We observed significant correlation with drusen baseline area and the GRS in the age-related eye disease study (AREDS) dataset (ρ = 0.175, P = 0.006). Measures of association were not statistically significant between drusen progression and the GRS (P = 0.54). Pathway analysis revealed the cell adhesion molecules pathway as the most highly significant pathway associated with drusen progression (corrected P = 0.02). CONCLUSIONS: In this study, we explored the potential influence of known common AMD genetic risk factors on drusen progression. Our results from the GRS analysis showed association of increasing genetic burden (from 19 AMD associated loci) to baseline drusen load but not drusen progression in the AREDS dataset while pathway analysis suggests additional genetic contributors to AMD risk.


Genetic Predisposition to Disease , Retinal Drusen/genetics , Aged , Disease Progression , Female , Fundus Oculi , Genetic Association Studies , Genotyping Techniques , Humans , Macular Degeneration/diagnosis , Macular Degeneration/genetics , Male , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide/genetics , Retinal Drusen/diagnosis , Risk Factors
16.
J Clin Med ; 5(3)2016 Mar 04.
Article En | MEDLINE | ID: mdl-26959068

Age-related macular degeneration (AMD), a highly prevalent and impactful disease of aging, is inarguably influenced by complex interactions between genetic and environmental factors. Various risk scores have been tested that assess measurable genetic and environmental contributions to disease. We herein summarize and review the ability and utility of these numerous models for prediction of AMD and suggest additional risk factors to be incorporated into clinically useful predictive models of AMD.

17.
Nat Genet ; 48(2): 134-43, 2016 Feb.
Article En | MEDLINE | ID: mdl-26691988

Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, with limited therapeutic options. Here we report on a study of >12 million variants, including 163,714 directly genotyped, mostly rare, protein-altering variants. Analyzing 16,144 patients and 17,832 controls, we identify 52 independently associated common and rare variants (P < 5 × 10(-8)) distributed across 34 loci. Although wet and dry AMD subtypes exhibit predominantly shared genetics, we identify the first genetic association signal specific to wet AMD, near MMP9 (difference P value = 4.1 × 10(-10)). Very rare coding variants (frequency <0.1%) in CFH, CFI and TIMP3 suggest causal roles for these genes, as does a splice variant in SLC16A8. Our results support the hypothesis that rare coding variants can pinpoint causal genes within known genetic loci and illustrate that applying the approach systematically to detect new loci requires extremely large sample sizes.


Genome-Wide Association Study , Macular Degeneration/genetics , Genetic Predisposition to Disease , Humans , Mutation
18.
BMC Bioinformatics ; 16: 329, 2015 Oct 14.
Article En | MEDLINE | ID: mdl-26467978

BACKGROUND: Age-related macular degeneration (AMD) is the leading cause of irreversible visual loss in the elderly in developed countries and typically affects more than 10% of individuals over age 80. AMD has a large genetic component, with heritability estimated to be between 45% and 70%. Numerous variants have been identified and implicate various molecular mechanisms and pathways for AMD pathogenesis but those variants only explain a portion of AMD's heritability. The goal of our study was to estimate the cumulative genetic contribution of common variants on AMD risk for multiple pathways related to the etiology of AMD, including angiogenesis, antioxidant activity, apoptotic signaling, complement activation, inflammatory response, response to nicotine, oxidative phosphorylation, and the tricarboxylic acid cycle. While these mechanisms have been associated with AMD in literature, the overall extent of the contribution to AMD risk for each is unknown. METHODS: In a case-control dataset with 1,813 individuals genotyped for over 600,000 SNPs we used Genome-wide Complex Trait Analysis (GCTA) to estimate the proportion of AMD risk explained by SNPs in genes associated with each pathway. SNPs within a 50 kb region flanking each gene were also assessed, as well as more distant, putatively regulatory SNPs, based on DNaseI hypersensitivity data from ocular tissue in the ENCODE project. RESULTS: We found that 19 previously associated AMD risk SNPs contributed to 13.3% of the risk for AMD in our dataset, while the remaining genotyped SNPs contributed to 36.7% of AMD risk. Adjusting for the 19 risk SNPs, the complement activation and inflammatory response pathways still explained a statistically significant proportion of additional risk for AMD (9.8% and 17.9%, respectively), with other pathways showing no significant effects (0.3% - 4.4%). DISCUSSION: Our results show that SNPs associated with complement activation and inflammation significantly contribute to AMD risk, separately from the risk explained by the 19 known risk SNPs. We found that SNPs within 50 kb regions flanking genes explained additional risk beyond genic SNPs, suggesting a potential regulatory role, but that more distant SNPs explained less than 0.5% additional risk for each pathway. CONCLUSIONS: From these analyses we find that the impact of complement SNPs on risk for AMD extends beyond the established genome-wide significant SNPs.


Macular Degeneration/pathology , Case-Control Studies , Female , Gene Regulatory Networks , Genome-Wide Association Study , Genotype , Humans , Linear Models , Linkage Disequilibrium , Macular Degeneration/genetics , Macular Degeneration/metabolism , Male , Phenotype , Polymorphism, Single Nucleotide , Risk
19.
Hum Factors ; 57(2): 347-59, 2015 Mar.
Article En | MEDLINE | ID: mdl-25850162

OBJECTIVE: In this study, we investigated how drivers adapt secondary-task initiation and time-sharing behavior when faced with fluctuating driving demands. BACKGROUND: Reading text while driving is particularly detrimental; however, in real-world driving, drivers actively decide when to perform the task. METHOD: In a test track experiment, participants were free to decide when to read messages while driving along a straight road consisting of an area with increased driving demands (demand zone) followed by an area with low demands. A message was made available shortly before the vehicle entered the demand zone. We manipulated the type of driving demands (baseline, narrow lane, pace clock, combined), message format (no message, paragraph, parsed), and the distance from the demand zone when the message was available (near, far). RESULTS: In all conditions, drivers started reading messages (drivers' first glance to the display) before entering or before leaving the demand zone but tended to wait longer when faced with increased driving demands. While reading messages, drivers looked more or less off road, depending on types of driving demands. CONCLUSIONS: For task initiation, drivers avoid transitions from low to high demands; however, they are not discouraged when driving demands are already elevated. Drivers adjust time-sharing behavior according to driving demands while performing secondary tasks. Nonetheless, such adjustment may be less effective when total demands are high. APPLICATION: This study helps us to understand a driver's role as an active controller in the context of distracted driving and provides insights for developing distraction interventions.


Attention/physiology , Automobile Driving , Reading , Task Performance and Analysis , Adult , Computer Simulation , Female , Fixation, Ocular/physiology , Humans , Male , Middle Aged , Text Messaging
20.
Invest Ophthalmol Vis Sci ; 55(7): 4455-60, 2014 Jun 06.
Article En | MEDLINE | ID: mdl-24906858

PURPOSE: Age-related macular degeneration is the leading cause of blindness among the adult population in the developed world. To further the understanding of this disease, we have studied the genetically isolated Amish population of Ohio and Indiana. METHODS: Cumulative genetic risk scores were calculated using the 19 known allelic associations. Exome sequencing was performed in three members of a small Amish family with AMD who lacked the common risk alleles in complement factor H (CFH) and ARMS2/HTRA1. Follow-up genotyping and association analysis was performed in a cohort of 973 Amish individuals, including 95 with self-reported AMD. RESULTS: The cumulative genetic risk score analysis generated a mean genetic risk score of 1.12 (95% confidence interval [CI]: 1.10, 1.13) in the Amish controls and 1.18 (95% CI: 1.13, 1.22) in the Amish cases. This mean difference in genetic risk scores is statistically significant (P = 0.0042). Exome sequencing identified a rare variant (P503A) in CFH. Association analysis in the remainder of the Amish sample revealed that the P503A variant is significantly associated with AMD (P = 9.27 × 10(-13)). Variant P503A was absent when evaluated in a cohort of 791 elderly non-Amish controls, and 1456 non-Amish cases. CONCLUSIONS: Data from the cumulative genetic risk score analysis suggests that the variants reported by the AMDGene consortium account for a smaller genetic burden of disease in the Amish compared with the non-Amish Caucasian population. Using exome sequencing data, we identified a novel missense mutation that is shared among a densely affected nuclear Amish family and located in a gene that has been previously implicated in AMD risk.


Amish/genetics , Macular Degeneration/genetics , Mutation, Missense/genetics , Polymorphism, Single Nucleotide , Aged , Aged, 80 and over , Complement Factor H/genetics , Exome/genetics , Female , Gene Frequency , Genetic Linkage , Genotype , Humans , Indiana , Macular Degeneration/diagnosis , Male , Middle Aged , Ohio , Pedigree , White People/genetics
...