Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 249
Filter
1.
Visc Med ; : 1-6, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-39047173

ABSTRACT

Background: Acute graft-versus-host disease (GvHD) is a major and sometimes lethal complication following allogeneic stem cell transplantation (aSCT). In the last 10 years, a massive loss of microbiota diversity with suppression of commensal bacteria and their protective metabolites has been identified as a major risk factor of GvHD. Summary: Since 2018, several studies have been published showing some efficacy of fecal microbiota transfer (FMT) in aSCT patients. FMT was used (1) to eliminate antibiotic resistant bacteria, (2) to restore microbiota diversity after hematopoietic recovery, or (3) in most cases to treat steroid-resistant GvHD. Overall response rates between 30 and 50% have been reported, but randomized trials are still pending. Newer approaches try to evaluate the role of prophylactic FMT in order to prevent GvHD and other complications. Although aSCT patients are heavily immunosuppressed, no major safety concerns regarding FMT have been reported so far. Key Message: FMT is a promising approach for modulation of GvHD after aSCT and should be further explored in randomized trials.

2.
Ann Hematol ; 103(8): 3071-3081, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38916740

ABSTRACT

Steroid-refractory acute graft-versus-host disease (aGvHD) is a serious complication after allogeneic hematopoietic stem cell transplantation, associated with significant mortality. Ruxolitinib was the first drug approved for aGvHD, based on results of the REACH2 trial; however, real-world data are limited. We retrospectively analyzed the safety and efficacy of ruxolitinib for treatment of aGvHD at our center from March 2016 to August 2022 and assessed biomarkers of risk. We identified 49 patients receiving ruxolitinib as second- (33/49), third- (11/49), fourth- (3/49), or fifth-line (2/49) treatment. Ruxolitinib was started on median day 11 (range, 7-21) after aGvHD onset; median duration of administration was 37 days (range, 20-86), with 10 patients continuing treatment at last follow-up. Median follow-up period was 501 days (range, 95-905). In the primary analysis at the 1-month assessment, overall response rate was 65%, and failure-free survival was 78%. Infectious complications ≥ CTCAE Grade III were observed in 10/49 patients within 1-month followup. Patients responding to ruxolitinib therapy required fewer steroids and exhibited lower levels of the serum biomarkers regenerating islet-derived protein 3-alpha, suppression of tumorigenicity 2, and the Mount Sinai Acute GVHD International Consortium algorithm probability. A univariate regression model revealed steroid-dependent aGvHD as a significant predictor of better response to ruxolitinib. Within 6-months follow-up, four patients experienced recurrence of underlying malignancy, and eight died due to treatment-related mortality. Overall, ruxolitinib was welltolerated and showed response in heavily pretreated patients, with results comparable to those of the REACH2 trial. Biomarkers may be useful predictors of response to ruxolitinib.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Nitriles , Pyrazoles , Pyrimidines , Graft vs Host Disease/drug therapy , Graft vs Host Disease/etiology , Humans , Pyrazoles/therapeutic use , Pyrazoles/adverse effects , Pyrimidines/therapeutic use , Retrospective Studies , Male , Middle Aged , Female , Adult , Aged , Acute Disease , Young Adult , Adolescent , Follow-Up Studies , Treatment Outcome
3.
Blood Adv ; 8(12): 3284-3292, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38640195

ABSTRACT

ABSTRACT: Graft-versus-host disease (GVHD) is a major cause of nonrelapse mortality (NRM) after allogeneic hematopoietic cell transplantation. Algorithms containing either the gastrointestinal (GI) GVHD biomarker amphiregulin (AREG) or a combination of 2 GI GVHD biomarkers (suppressor of tumorigenicity-2 [ST2] + regenerating family member 3 alpha [REG3α]) when measured at GVHD diagnosis are validated predictors of NRM risk but have never been assessed in the same patients using identical statistical methods. We measured the serum concentrations of ST2, REG3α, and AREG by enzyme-linked immunosorbent assay at the time of GVHD diagnosis in 715 patients divided by the date of transplantation into training (2004-2015) and validation (2015-2017) cohorts. The training cohort (n = 341) was used to develop algorithms for predicting the probability of 12-month NRM that contained all possible combinations of 1 to 3 biomarkers and a threshold corresponding to the concordance probability was used to stratify patients for the risk of NRM. Algorithms were compared with each other based on several metrics, including the area under the receiver operating characteristics curve, proportion of patients correctly classified, sensitivity, and specificity using only the validation cohort (n = 374). All algorithms were strong discriminators of 12-month NRM, whether or not patients were systemically treated (n = 321). An algorithm containing only ST2 + REG3α had the highest area under the receiver operating characteristics curve (0.757), correctly classified the most patients (75%), and more accurately risk-stratified those who developed Minnesota standard-risk GVHD and for patients who received posttransplant cyclophosphamide-based prophylaxis. An algorithm containing only AREG more accurately risk-stratified patients with Minnesota high-risk GVHD. Combining ST2, REG3α, and AREG into a single algorithm did not improve performance.


Subject(s)
Algorithms , Amphiregulin , Biomarkers , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Interleukin-1 Receptor-Like 1 Protein , Pancreatitis-Associated Proteins , Humans , Graft vs Host Disease/blood , Graft vs Host Disease/diagnosis , Graft vs Host Disease/etiology , Graft vs Host Disease/mortality , Interleukin-1 Receptor-Like 1 Protein/blood , Biomarkers/blood , Pancreatitis-Associated Proteins/blood , Male , Female , Middle Aged , Adult , Amphiregulin/blood , Hematopoietic Stem Cell Transplantation/adverse effects , Aged , Prognosis , Antigens, Neoplasm/blood , Acute Disease , Adolescent , Young Adult
4.
Blood Adv ; 8(13): 3488-3496, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38640197

ABSTRACT

ABSTRACT: The significance of biomarkers in second-line treatment for acute graft-versus-host disease (GVHD) has not been well characterized. We analyzed clinical data and serum samples at the initiation of second-line systemic treatment of acute GVHD from 167 patients from 17 centers of the Mount Sinai Acute GVHD International Consortium (MAGIC) between 2016 and 2021. Sixty-two patients received ruxolitinib-based therapy, whereas 102 received other systemic agents. In agreement with prospective trials, ruxolitinib resulted in a higher day 28 (D28) overall response Frate than nonruxolitinib therapies (55% vs 31%, P = .003) and patients who received ruxolitinib had significantly lower nonrelapse mortality (NRM) than those who received nonruxolitinib therapies (point estimates at 2-year: 35% vs 61%, P = .002). Biomarker analyses demonstrated that the benefit from ruxolitinib was observed only in patients with low MAGIC algorithm probabilities (MAPs) at the start of second-line treatment. Among patients with a low MAP, those who received ruxolitinib experienced significantly lower NRM than those who received nonruxolitinib therapies (point estimates at 2-year: 12% vs 41%, P = .016). However, patients with high MAP experienced high NRM regardless of treatment with ruxolitinib or nonruxolitinib therapies (point estimates at 2-year: 67% vs 80%, P = .65). A landmark analysis demonstrated that the relationship between the D28 response and NRM largely depends on the MAP level at the initiation of second-line therapy. In conclusion, MAP measured at second-line systemic treatment for acute GVHD predicts treatment response and NRM. The outcomes of patients with high MAP are poor regardless of treatment choice, and ruxolitinib appears to primarily benefit patients with low MAP.


Subject(s)
Algorithms , Graft vs Host Disease , Humans , Graft vs Host Disease/drug therapy , Graft vs Host Disease/etiology , Male , Female , Middle Aged , Adult , Treatment Outcome , Nitriles/therapeutic use , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , Aged , Acute Disease , Biomarkers , Young Adult , Adolescent , Hematopoietic Stem Cell Transplantation/adverse effects
5.
Transplant Cell Ther ; 30(6): 603.e1-603.e11, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38548227

ABSTRACT

Acute graft versus host disease (GVHD) is a common and serious complication of allogeneic hematopoietic cell transplantation (HCT) in children but overall clinical grade at onset only modestly predicts response to treatment and survival outcomes. Two tools to assess risk at initiation of treatment were recently developed. The Minnesota risk system stratifies children for risk of nonrelapse mortality (NRM) according to the pattern of GVHD target organ severity. The Mount Sinai Acute GVHD International Consortium (MAGIC) algorithm of 2 serum biomarkers (ST2 and REG3α) predicts NRM in adult patients but has not been validated in a pediatric population. We aimed to develop and validate a system that stratifies children at the onset of GVHD for risk of 6-month NRM. We determined the MAGIC algorithm probabilities (MAPs) and Minnesota risk for a multicenter cohort of 315 pediatric patients who developed GVHD requiring treatment with systemic corticosteroids. MAPs created 3 risk groups with distinct outcomes at the start of treatment and were more accurate than Minnesota risk stratification for prediction of NRM (area under the receiver operating curve (AUC), .79 versus .62, P = .001). A novel model that combined Minnesota risk and biomarker scores created from a training cohort was more accurate than either biomarkers or clinical systems in a validation cohort (AUC .87) and stratified patients into 2 groups with highly different 6-month NRM (5% versus 38%, P < .001). In summary, we validated the MAP as a prognostic biomarker in pediatric patients with GVHD, and a novel risk stratification that combines Minnesota risk and biomarker risk performed best. Biomarker-based risk stratification can be used in clinical trials to develop more tailored approaches for children who require treatment for GVHD.


Subject(s)
Biomarkers , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Pancreatitis-Associated Proteins , Humans , Graft vs Host Disease/blood , Graft vs Host Disease/diagnosis , Child , Biomarkers/blood , Female , Male , Hematopoietic Stem Cell Transplantation/adverse effects , Child, Preschool , Adolescent , Pancreatitis-Associated Proteins/blood , Acute Disease , Risk Assessment , Infant , Interleukin-1 Receptor-Like 1 Protein/blood , Algorithms , Transplantation, Homologous/adverse effects , Treatment Outcome
6.
Front Immunol ; 15: 1347835, 2024.
Article in English | MEDLINE | ID: mdl-38495883

ABSTRACT

Vitamin D3 regulates a variety of biological processes irrespective of its well-known importance for calcium metabolism. Epidemiological and animal studies indicate a role in immune regulation, intestinal barrier function and microbiome diversity. Here, we analyzed the impact of different vitamin D3- containing diets on C57BL/6 and BALB/c mice, with a particular focus on gut homeostasis and also investigated effects on immune cells in vitro. Weak regulatory effects were detected on murine T cells. By trend, the active vitamin D3 metabolite 1,25-dihydroxyvitamin D3 suppressed IFN, GM-CSF and IL-10 cytokine secretion in T cells of C57BL/6 but not BALB/c mice, respectively. Using different vitamin D3-fortified diets, we found a tissue-specific enrichment of mainly CD11b+ myeloid cells but not T cells in both mouse strains e.g. in spleen and Peyer's Patches. Mucin Reg3γ and Batf expression, as well as important proteins for gut homeostasis, were significantly suppressed in the small intestine of C57BL76 but not BALB/c mice fed with a high-vitamin D3 containing diet. Differences between both mouse stains were not completely explained by differences in vitamin D3 receptor expression which was strongly expressed in epithelial cells of both strains. Finally, we analyzed gut microbiome and again an impact of vitamin D3 was detected in C57BL76 but not BALB/c. Our data suggest strain-specific differences in vitamin D3 responsiveness under steady state conditions which may have important implications when choosing a murine disease model to study vitamin D3 effects.


Subject(s)
Cholecalciferol , Intestine, Small , Mice , Animals , Cholecalciferol/pharmacology , Mice, Inbred C57BL , Epithelial Cells , Diet
7.
Transplant Cell Ther ; 30(4): 421-432, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38320730

ABSTRACT

The overall response rate (ORR) 28 days after treatment has been adopted as the primary endpoint for clinical trials of acute graft versus host disease (GVHD). However, physicians often need to modify immunosuppression earlier than day (D) 28, and non-relapse mortality (NRM) does not always correlate with ORR at D28. We studied 1144 patients that received systemic treatment for GVHD in the Mount Sinai Acute GVHD International Consortium (MAGIC) and divided them into a training set (n=764) and a validation set (n=380). We used a recursive partitioning algorithm to create a Mount Sinai model that classifies patients into favorable or unfavorable groups that predicted 12 month NRM according to overall GVHD grade at both onset and D14. In the Mount Sinai model grade II GVHD at D14 was unfavorable for grade III/IV GVHD at onset and predicted NRM as well as the D28 standard response model. The MAGIC algorithm probability (MAP) is a validated score that combines the serum concentrations of suppression of tumorigenicity 2 (ST2) and regenerating islet-derived 3-alpha (REG3α) to predict NRM. Inclusion of the D14 MAP biomarker score with the D14 Mount Sinai model created three distinct groups (good, intermediate, poor) with strikingly different NRM (8%, 35%, 76% respectively). This D14 MAGIC model displayed better AUC, sensitivity, positive and negative predictive value, and net benefit in decision curve analysis compared to the D28 standard response model. We conclude that this D14 MAGIC model could be useful in therapeutic decisions and may offer an improved endpoint for clinical trials of acute GVHD treatment.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Biomarkers , Graft vs Host Disease/drug therapy , Immunosuppression Therapy , Transplantation, Homologous
8.
Front Immunol ; 15: 1280876, 2024.
Article in English | MEDLINE | ID: mdl-38384455

ABSTRACT

Introduction: Data on genomic susceptibility for adverse outcomes after hematopoietic stem cell transplantation (HSCT) for recipients are scarce. Methods: We performed a genome wide association study (GWAS) to identify genes associated with survival/mortality, relapse, and severe graft-versus-host disease (sGvHD), fitting proportional hazard and subdistributional models to data of n=1,392 recipients of European ancestry from three centres. Results: The single nucleotide polymorphism (SNP) rs17154454, intronic to the neuronal growth guidant semaphorin 3C gene (SEMA3C), was genome-wide significantly associated with event-free survival (p=7.0x10-8) and sGvHD (p=7.5x10-8). Further associations were detected for SNPs in the Paxillin gene (PXN) with death without prior relapse or sGvHD, as well as for SNPs of the Plasmacytoma Variant Translocation 1 gene (PVT1, a long non-coding RNA gene), the Melanocortin 5 Receptor (MC5R) gene and the WW Domain Containing Oxidoreductase gene (WWOX), all associated with the occurrence of sGvHD. Functional considerations support the observed associations. Discussion: Thus, new genes were identified, potentially influencing the outcome of HSCT.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Genome-Wide Association Study , Hematopoietic Stem Cell Transplantation/adverse effects , Graft vs Host Disease/genetics , Genomics , Recurrence
9.
Sci Transl Med ; 16(735): eadi1501, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38381845

ABSTRACT

Acute graft-versus-host disease (aGVHD) is a life-threatening complication of allogeneic hematopoietic cell transplantation (allo-HCT), for which therapeutic options are limited. Strategies to promote intestinal tissue tolerance during aGVHD may improve patient outcomes. Using single-cell RNA sequencing, we identified a lipocalin-2 (LCN2)-expressing neutrophil population in mice with intestinal aGVHD. Transfer of LCN2-overexpressing neutrophils or treatment with recombinant LCN2 reduced aGVHD severity, whereas the lack of epithelial or hematopoietic LCN2 enhanced aGVHD severity and caused microbiome alterations. Mechanistically, LCN2 induced insulin-like growth factor 1 receptor (IGF-1R) signaling in macrophages through the LCN2 receptor SLC22A17, which increased interleukin-10 (IL-10) production and reduced major histocompatibility complex class II (MHCII) expression. Transfer of LCN2-pretreated macrophages reduced aGVHD severity but did not reduce graft-versus-leukemia effects. Furthermore, LCN2 expression correlated with IL-10 expression in intestinal biopsies in multiple cohorts of patients with aGVHD, and LCN2 induced IGF-1R signaling in human macrophages. Collectively, we identified a LCN2-expressing intestinal neutrophil population that reduced aGVHD severity by decreasing MHCII expression and increasing IL-10 production in macrophages. This work provides the foundation for administration of LCN2 as a therapeutic approach for aGVHD.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Animals , Mice , Neutrophils/pathology , Interleukin-10 , Lipocalin-2/genetics , Graft vs Host Disease/genetics , Macrophages/pathology , Acute Disease
10.
Oncoimmunology ; 13(1): 2296712, 2024.
Article in English | MEDLINE | ID: mdl-38170159

ABSTRACT

Interferon regulatory factor 4 (IRF4) is a master transcription factor that regulates T helper cell (Th) differentiation. It interacts with the Basic leucine zipper transcription factor, ATF-like (BATF), depletion of which in CD4+ T cells abrogates acute graft-versus-host disease (aGVHD)-induced colitis. Here, we investigated the immune-regulatory role of Irf4 in a mouse model of MHC-mismatched bone marrow transplantation. We found that recipients of allogenic Irf4-/- CD4+ T cells developed less GVHD-related symptoms. Transcriptome analysis of re-isolated donor Irf4-/- CD4+ T helper (Th) cells, revealed gene expression profiles consistent with loss of effector T helper cell signatures and enrichment of a regulatory T cell (Treg) gene expression signature. In line with these findings, we observed a high expression of the transcription factor BTB and CNC homolog 2; (BACH2) in Irf4-/- T cells, which is associated with the formation of Treg cells and suppression of Th subset differentiation. We also found an association between BACH2 expression and Treg differentiation in patients with intestinal GVHD. Finally, our results indicate that IRF4 and BACH2 act as counterparts in Th cell polarization and immune homeostasis during GVHD. In conclusion, targeting the BACH2/IRF4-axis could help to develop novel therapeutic approaches against GVHD.


Subject(s)
Colitis , Graft vs Host Disease , Mice , Animals , Humans , Colitis/chemically induced , Colitis/genetics , T-Lymphocytes, Regulatory/metabolism , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Graft vs Host Disease/genetics , Graft vs Host Disease/metabolism
11.
Nat Cancer ; 5(1): 187-208, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38172339

ABSTRACT

The microbiome is a predictor of clinical outcome in patients receiving allogeneic hematopoietic stem cell transplantation (allo-SCT). Microbiota-derived metabolites can modulate these outcomes. How bacteria, fungi and viruses contribute to the production of intestinal metabolites is still unclear. We combined amplicon sequencing, viral metagenomics and targeted metabolomics from stool samples of patients receiving allo-SCT (n = 78) and uncovered a microbiome signature of Lachnospiraceae and Oscillospiraceae and their associated bacteriophages, correlating with the production of immunomodulatory metabolites (IMMs). Moreover, we established the IMM risk index (IMM-RI), which was associated with improved survival and reduced relapse. A high abundance of short-chain fatty acid-biosynthesis pathways, specifically butyric acid via butyryl-coenzyme A (CoA):acetate CoA-transferase (BCoAT, which catalyzes EC 2.8.3.8) was detected in IMM-RI low-risk patients, and virome genome assembly identified two bacteriophages encoding BCoAT as an auxiliary metabolic gene. In conclusion, our study identifies a microbiome signature associated with protective IMMs and provides a rationale for considering metabolite-producing consortia and metabolite formulations as microbiome-based therapies.


Subject(s)
Bacteriophages , Hematopoietic Stem Cell Transplantation , Humans , Bacteriophages/genetics , Feces/microbiology , Hematopoietic Stem Cell Transplantation/adverse effects , Bacteria/genetics , Bacteria/metabolism , Butyric Acid/metabolism
12.
Sci Transl Med ; 15(727): eadf8366, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38117900

ABSTRACT

Graft-versus-host disease (GVHD) remains the major cause of morbidity and nonrelapse mortality (NRM) after hematopoietic cell transplantation (HCT). Inflammatory cytokines mediate damage to key GVHD targets such as intestinal stem cells (ISCs) and also activate receptor interacting protein kinase 1 (RIP1; RIPK1), a critical regulator of apoptosis and necroptosis. We therefore investigated the role of RIP1 in acute GVHD using samples from HCT patients, modeling GVHD damage in vitro with both human and mouse gastrointestinal (GI) organoids, and blocking RIP1 activation in vivo using several well-characterized mouse HCT models. Increased phospho-RIP1 expression in GI biopsies from patients with acute GVHD correlated with tissue damage and predicted NRM. Both the genetic inactivation of RIP1 and the RIP1 inhibitor GNE684 prevented GVHD-induced apoptosis of ISCs in vivo and in vitro. Daily administration of GNE684 for 14 days reduced inflammatory infiltrates in three GVHD target organs (intestine, liver, and spleen) in mice. Unexpectedly, GNE684 administration also reversed the marked loss of regulatory T cells in the intestines and liver during GVHD and reduced splenic T cell exhaustion, thus improving immune reconstitution. Pharmacological and genetic inhibition of RIP1 improved long-term survival without compromising the graft-versus-leukemia (GVL) effect in lymphocytic and myeloid leukemia mouse models. Thus, RIP1inhibition may represent a nonimmunosuppressive treatment for GVHD.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Immune Reconstitution , Leukemia , Humans , Mice , Animals , Cytokines , Leukemia/therapy
14.
Transplant Cell Ther ; 29(12): 772.e1-772.e10, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37777112

ABSTRACT

Chronic graft-versus-host disease (cGVHD) is the leading cause of late nonrelapse mortality (NRM) after allogeneic hematopoietic stem cell transplantation (alloHSCT) and defined by 8 diagnostic target organs. Recently, provisional criteria for atypical manifestations of cGVHD that include manifestations in nonclassic organs as well as atypical manifestations in National Institutes of Health (NIH)-defined organs, were proposed by a NIH task force. Little is known about the incidence, risk factors, and impact on survival of atypical cGVHD, however. The aim of the present study was to analyze these parameters in a sequential patient population. We retrospectively screened 623 patients who underwent alloHSCT at the University Medical Center Regensburg between January 2008 and December 2020 for atypical cGVHD manifestations, applying the provisional NIH taskforce criteria. A total of 102 patients (16.4%) met the criteria, representing 25% of all cGVHD cases, and 14 patients (2.2%) had only atypical cGVHD. The most frequent manifestations were immune-mediated cytopenias (24.5%), renal cGVHD (13.7%) and (poly)serositis (13.7%). Multivariate analysis identified prior acute GVHD (odds ratio [OR], 2.28 and 2.93) and infusion of donor lymphocytes (OR, 1.77 for both) as risk factors for classic cGVHD and atypical cGVHD, whereas total body irradiation was an independent risk factor for atypical cGVHD manifestations only (OR, 1.76). Compared to patients without cGVHD, those with atypical and NIH-defined cGVHD showed similarly better overall survival (P = .034 and < .001) and low relapse-related mortality (P < .001 for both). NRM was significantly increased by atypical GVHD, but not by NIH-defined cGVHD (P = .019 and .10), which was driven only by a few atypical organ manifestations (eg, renal, restrictive lung disease, peripheral neuropathy), whereas others did not contribute to NRM (eg, thyroid gland, musculoskeletal, pancreas). In summary, atypical cGVHD is more common than previously estimated and has both similarities with and differences from NIH-defined cGVHD. In particular, the increased NRM and a subset of patients with only atypical cGVHD point to the urgent need to capture these manifestations in cGVHD cohorts, including analysis of treatment outcomes.


Subject(s)
Bronchiolitis Obliterans Syndrome , Graft vs Host Disease , Humans , Retrospective Studies , Incidence , Chronic Disease , Graft vs Host Disease/diagnosis , Graft vs Host Disease/epidemiology , Graft vs Host Disease/etiology
15.
EClinicalMedicine ; 62: 102111, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37654670

ABSTRACT

Background: Failure of gastrointestinal acute graft-versus-host disease (GI-aGvHD) to respond to steroid therapy is associated with limited further therapeutic options. We aimed to assess the safety and efficacy of the first-in-human use of the pooled allogeneic faecal microbiota, MaaT013, for the treatment of steroid-refractory GI-aGvHD. Methods: This prospective, international, single-arm, phase 2a study reports clinical outcomes from a 24-patient cohort with grade III-IV, steroid refractory GI-aGvHD treated with the pooled allogeneic faecal microbiota MaaT013. MaaT013 involved pooling faecal matter from 3 to 8 screened donors then transplanting the pooled batches into patients to treat GI-aGVHD. The 24 patients were treated in the HERACLES study (Aug 2018 to Nov 2020) at 26 sites in Europe and an additional 52 patients were treated in a compassionate use/expanded access program (EAP) in France (July 2018 to April 2021). The primary endpoint was GI response at day 28, defined as the proportion of patients with GI-aGvHD who had a complete response (CR) or very good partial response (VGPR). GvHD grading and staging were assessed according to the revised Glucksberg criteria. Adverse events and severe adverse events were monitored for 6 months and 12 months, respectively. The HERACLES study was registered with ClinicalTrials.gov (NCT03359980). Findings: Compared with single donors, MaaT013 is characterised by higher microbial richness and reduced variability across batches. At day 28 (D28), the GI-overall response rate (ORR) was 38% in the prospective population, including 5 complete responses (CR), 2 very good partial responses (VGPR) and 2 partial responses (PR). In the EAP, the GI-ORR was 58% (17 CR, 9 VGPR and 4 PR). The 12-month overall survival (OS) was 25% in the prospective study and 38% in the EAP. Regarding safety, five infectious complications, including 3 sepsis, could not be excluded from being related to the study procedure in HERACLES. Shotgun sequencing analyses of the identified strains suggest that none were found in MaaT013. In the EAP, 18 pharmacovigilance cases were reported among 52 treated patients, including 11 bacteraemia/sepsis. In HERACLES, we observed in stools from responding patients at D28 a higher microbiota richness and increased levels of beneficial bacteria, in particular butyrate producers, along with increased levels of short-chain fatty acid and bile acids. In contrast, stools from non-responding (NR) patients displayed increased levels of pathogenic pro-inflammatory bacteria along with increased systemic inflammatory parameters. Interpretation: Overall, MaaT013 was safe in this population of highly immunocompromised patients and was associated with responses in some patients with GI-aGvHD and deserves further investigation. Funding: MaaT Pharma.

17.
Cell Rep Med ; 4(7): 101125, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37467715

ABSTRACT

Acute graft-versus-host disease (aGvHD) is a significant complication after allogeneic hematopoietic stem cell transplantation (aHSCT), but major factors determining disease severity are not well defined yet. By combining multiplexed tissue imaging and single-cell RNA sequencing on gastrointestinal biopsies from aHSCT-treated individuals with fecal microbiome analysis, we link high microbiome diversity and the abundance of short-chain fatty acid-producing bacteria to the sustenance of suppressive regulatory T cells (Tregs). Furthermore, aGvHD severity strongly associates with the clonal expansion of mainly CD8 T cells, which we find distributed over anatomically distant regions of the gut, persistent over time, and inversely correlated with the presence of suppressive Tregs. Overall, our study highlights the pathophysiological importance of expanded CD8 T cell clones in the progression of aGvHD toward more severe clinical manifestations and strongly supports the further development of microbiome interventions as GvHD treatment via repopulation of the gut Treg niche to suppress inflammation.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Microbiota , Humans , Graft vs Host Disease/pathology , Microbiota/genetics , Hematopoietic Stem Cell Transplantation/adverse effects , Gastrointestinal Tract/pathology , CD8-Positive T-Lymphocytes/pathology
18.
Haematologica ; 108(11): 2993-3000, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37259539

ABSTRACT

Intestinal immunoglobulin A (IgA) is strongly involved in microbiota homeostasis. Since microbiota disruption is a major risk factor of acute graft-versus-host disease (GvHD), we addressed the kinetics of intestinal IgA-positive (IgA+) plasma cells by immunohistology in a series of 430 intestinal biopsies obtained at a median of 1,5 months after allogeneic stem cell transplantation (allo-SCT) from 115 patients (pts) at our center. IgA+ plasma cells were located in the subepithelial lamina propria and suppressed in the presence of histological aGvHD (GvHD Lerner stage 0: 131+/-8 IgA+ plasma cells/mm2; stage 1-2: 108+/-8 IgA+ plasma cells/mm2; stage 3-4: 89+/-16 IgA+ plasma cells/mm2; P=0.004). Overall, pts with IgA+ plasma cells below median had an increased treatment related mortality (P=0.04). Time courses suggested a gradual recovery of IgA+ plasma cells after day 100 in the absence but not in the presence of GvHD. Vice versa IgA+ plasma cells above median early after allo-SCT were predictive of relapse and relapse-related mortality (RRM): pts with low IgA+ cells had a 15% RRM at 2 and at 5 years, while pts with high IgA+ cells had a 31% RRM at 2 years and more than 46% at 5 years; multivariate analysis indicated high IgA+ plasma cells in biopsies (hazard ratio =2.7; 95% confidence interval: 1.04-7.00) as independent predictors of RRM, whereas Lerner stage and disease stage themselves did not affect RRM. In contrast, IgA serum levels at the time of biopsy were not predictive for RRM. In summary, our data indicate that IgA+ cells are highly sensitive indicators of alloreaction early after allo-SCT showing association with TRM but also allowing prediction of relapse independently from the presence of overt GvHD.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Plasma Cells/pathology , Immunoglobulin A , Hematopoietic Stem Cell Transplantation/adverse effects , Transplantation, Homologous/adverse effects , Graft vs Host Disease/diagnosis , Graft vs Host Disease/etiology , Chronic Disease , Recurrence
19.
Ann Hematol ; 102(8): 2199-2211, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37347269

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative treatment option for selected patients with acute myeloid leukemia. Yet, the influence of total body irradiation (TBI)-based conditioning as compared to non-TBI-based conditioning on long-term mortality is unclear. We retrospectively evaluated outcomes after TBI-based (n = 91) and non-TBI-based conditioning (melphalan-based, n = 248) for 1st allo-HSCT patients transplanted at the University Hospital Regensburg between 1999 and 2020. TBI was performed with an average dose rate of 4 cGy/min. Median follow-up was 8.3 years (interquartile range, 4.8-12.9 years). Cumulative incidence rates of 5-year non-relapse mortality (NRM) were 17% (95% confidence interval, CI, 10-25) and 33% (95% CI, 27-40) after TBI- and non-TBI-based conditioning (P < 0.001). Five-year cumulative incidences of relapse (CIR) were 42% (95% CI, 32-52) and 29% (95% CI, 23-35) after TBI- and non-TBI-based conditioning (P = 0.030). The 5-year OS was 54% (95% CI, 43-64) and 55% (95% CI, 48-62) after TBI- and non-TBI-based conditioning. Both groups had similar 100-day acute graft-versus-host disease (aGVHD, 43% vs. 40%) and 5-year chronic GVHD (34% vs. 36%). The multivariable regression models found no associations of TBI with the outcomes NRM, CIR, PFS, OS, aGVHD, and cGVHD. TBI was no risk factor for NRM, even including mortality caused by secondary malignancies. NRM was influenced by patient age, advanced disease status, and the use of female donors for male recipients. TBI- and non-TBI-based conditioning appear to be equally effective and tolerable for AML patients eligible for 1st allo-HSCT.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Humans , Male , Female , Melphalan , Retrospective Studies , Whole-Body Irradiation/adverse effects , Transplantation Conditioning/adverse effects , Hematopoietic Stem Cell Transplantation/adverse effects , Recurrence , Graft vs Host Disease/epidemiology , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control
20.
Clin Infect Dis ; 77(10): 1432-1439, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37386935

ABSTRACT

BACKGROUND: Intestinal microbiome contributes to the pathophysiology of acute gastrointestinal (GI) graft-versus-host disease (GvHD) and loss of microbiome diversity influences the outcome of patients after allogeneic stem cell transplantation (SCT). Systemic broad-spectrum antibiotics have been identified as a major cause of early intestinal dysbiosis. METHODS: In 2017, our transplant unit at the university hospital in Regensburg changed the antibiotic strategy from a permissive way with initiation of antibiotics in all patients with neutropenic fever independent of the underlying cause and risk to a restrictive use in cases with high likelihood of cytokine release syndrome (eg, after anti-thymocyte globulin [ATG] therapy). We analyzed clinical data and microbiome parameters obtained 7 days after allogeneic SCT from 188 patients with ATG therapy transplanted in 2015/2016 (permissive cohort, n = 101) and 2918/2019 (restrictive cohort, n = 87). RESULTS: Restrictive antibiotic treatment postponed the beginning of antibiotic administration from 1.4 ± 7.6 days prior to 1.7 ± 5.5 days after SCT (P = .01) and significantly reduced the duration of antibiotic administration by 5.8 days (P < .001) without increase in infectious complications. Furthermore, we observed beneficial effects of the restrictive strategy compared with the permissive way on microbiome diversity (urinary 3-indoxylsulfate, P = .01; Shannon and Simpson indices, P < .001) and species abundance 7 days post-transplant as well as a positive trend toward a reduced incidence of severe GI GvHD (P = .1). CONCLUSIONS: Our data indicate that microbiota protection can be achieved by a more careful selection of neutropenic patients qualifying for antibiotic treatment during allogeneic SCT without increased risk of infectious complications.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Microbiota , Humans , Anti-Bacterial Agents/pharmacology , Cytokine Release Syndrome/complications , Cytokine Release Syndrome/drug therapy , Transplantation, Homologous/adverse effects , Hematopoietic Stem Cell Transplantation/adverse effects , Graft vs Host Disease/prevention & control , Graft vs Host Disease/etiology , Fever/etiology , Antilymphocyte Serum
SELECTION OF CITATIONS
SEARCH DETAIL