Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Chem Biol ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907112

ABSTRACT

Sterol-binding proteins are important regulators of lipid homeostasis and membrane integrity; however, the discovery of selective modulators can be challenging due to structural similarities in the sterol-binding domains. We report the discovery of potent and selective inhibitors of oxysterol-binding protein (OSBP), which we term oxybipins. Sterol-containing chemical chimeras aimed at identifying new sterol-binding proteins by targeted degradation, led to a significant reduction in levels of Golgi-associated proteins. The degradation occurred in lysosomes, concomitant with changes in protein glycosylation, indicating that the degradation of Golgi proteins was a downstream effect. By establishing a sterol transport protein biophysical assay panel, we discovered that the oxybipins potently inhibited OSBP, resulting in blockage of retrograde trafficking and attenuating Shiga toxin toxicity. As the oxybipins do not target other sterol transporters and only stabilized OSBP in intact cells, we advocate their use as tools to study OSBP function and therapeutic relevance.

2.
Chem Sci ; 14(45): 12973-12983, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38023519

ABSTRACT

Squalene synthase (SQS) is an essential enzyme in the mevalonate pathway, which controls cholesterol biosynthesis and homeostasis. Although catalytic inhibitors of SQS have been developed, none have been approved for therapeutic use so far. Herein we sought to develop SQS degraders using targeted protein degradation (TPD) to lower overall cellular cholesterol content. We found that KY02111, a small molecule ligand of SQS, selectively causes SQS to degrade in a proteasome-dependent manner. Unexpectedly, compounds based on the same scaffold linked to E3 ligase recruiting ligands led to SQS stabilization. Proteomic analysis found KY02111 to reduce only the levels of SQS, while lipidomic analysis determined that KY02111-induced degradation lowered cellular cholesteryl ester content. Stabilizers shielded SQS from its natural turnover without recruiting their matching E3 ligase or affecting enzymatic target activity. Our work shows that degradation of SQS is possible despite a challenging biological setting and provides the first chemical tools to degrade and stabilize SQS.

3.
Chembiochem ; 23(22): e202200475, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36134475

ABSTRACT

Profiling approaches have been increasingly employed for the characterization of disease-relevant phenotypes or compound perturbation as they provide a broad, unbiased view on impaired cellular states. We report that morphological profiling using the cell painting assay (CPA) can detect modulators of de novo pyrimidine biosynthesis and of dihydroorotate dehydrogenase (DHODH) in particular. The CPA can differentiate between impairment of pyrimidine and folate metabolism, which both affect cellular nucleotide pools. The identified morphological signature is shared by inhibitors of DHODH and the functionally tightly coupled complex III of the mitochondrial respiratory chain as well as by UMP synthase, which is downstream of DHODH. The CPA appears to be particularly suited for the detection of DHODH inhibitors at the site of their action in cells. As DHODH is a validated therapeutic target, the CPA will enable unbiased identification of DHODH inhibitors and inhibitors of de novo pyrimidine biosynthesis for biological research and drug discovery.


Subject(s)
Oxidoreductases Acting on CH-CH Group Donors , Dihydroorotate Dehydrogenase , Enzyme Inhibitors/pharmacology , Pyrimidines/pharmacology , Drug Discovery
SELECTION OF CITATIONS
SEARCH DETAIL
...