Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Lancet Glob Health ; 9(6): e802-e812, 2021 06.
Article in English | MEDLINE | ID: mdl-34019836

ABSTRACT

BACKGROUND: Understanding subnational variation in age-specific fertility rates (ASFRs) and total fertility rates (TFRs), and geographical clustering of high fertility and its determinants in low-income and middle-income countries, is increasingly needed for geographical targeting and prioritising of policy. We aimed to identify variation in fertility rates, to describe patterns of key selected fertility determinants in areas of high fertility. METHODS: We did a subnational analysis of ASFRs and TFRs from the most recent publicly available and nationally representative cross-sectional Demographic and Health Surveys and Multiple Indicator Cluster Surveys collected between 2010 and 2016 for 70 low-income, lower-middle-income, and upper-middle-income countries, across 932 administrative units. We assessed the degree of global spatial autocorrelation by using Moran's I statistic and did a spatial cluster analysis using the Getis-Ord Gi* local statistic to examine the geographical clustering of fertility and key selected fertility determinants. Descriptive analysis was used to investigate the distribution of ASFRs and of selected determinants in each cluster. FINDINGS: TFR varied from below replacement (2·1 children per women) in 36 of the 932 subnational regions (mainly located in India, Myanmar, Colombia, and Armenia), to rates of 8 and higher in 14 subnational regions, located in sub-Saharan Africa and Afghanistan. Areas with high-fertility clusters were mostly associated with areas of low prevalence of women with secondary or higher education, low use of contraception, and high unmet needs for family planning, although exceptions existed. INTERPRETATION: Substantial within-country variation in the distribution of fertility rates highlights the need for tailored programmes and strategies in high-fertility cluster areas to increase the use of contraception and access to secondary education, and to reduce unmet need for family planning. FUNDING: Wellcome Trust, the UK Foreign, Commonwealth and Development Office, and the Bill & Melinda Gates Foundation.


Subject(s)
Birth Rate/trends , Developed Countries/statistics & numerical data , Developing Countries/statistics & numerical data , Cross-Sectional Studies , Geography , Humans
2.
Big Earth Data ; 3(2): 108-139, 2019.
Article in English | MEDLINE | ID: mdl-31565697

ABSTRACT

Multi-temporal, globally consistent, high-resolution human population datasets provide consistent and comparable population distributions in support of mapping sub-national heterogeneities in health, wealth, and resource access, and monitoring change in these over time. The production of more reliable and spatially detailed population datasets is increasingly necessary due to the importance of improving metrics at sub-national and multi-temporal scales. This is in support of measurement and monitoring of UN Sustainable Development Goals and related agendas. In response to these agendas, a method has been developed to assemble and harmonise a unique, open access, archive of geospatial datasets. Datasets are provided as global, annual time series, where pertinent at the timescale of population analyses and where data is available, for use in the construction of population distribution layers. The archive includes sub-national census-based population estimates, matched to a geospatial layer denoting administrative unit boundaries, and a number of co-registered gridded geospatial factors that correlate strongly with population presence and density. Here, we describe these harmonised datasets and their limitations, along with the production workflow. Further, we demonstrate applications of the archive by producing multi-temporal gridded population outputs for Africa and using these to derive health and development metrics. The geospatial archive is available at https://doi.org/10.5258/SOTON/WP00650.

3.
J R Soc Interface ; 14(137)2017 12.
Article in English | MEDLINE | ID: mdl-29237823

ABSTRACT

Geographical factors have influenced the distributions and densities of global human population distributions for centuries. Climatic regimes have made some regions more habitable than others, harsh topography has discouraged human settlement, and transport links have encouraged population growth. A better understanding of these types of relationships enables both improved mapping of population distributions today and modelling of future scenarios. However, few comprehensive studies of the relationships between population spatial distributions and the range of drivers and correlates that exist have been undertaken at all, much less at high spatial resolutions, and particularly across the low- and middle-income countries. Here, we quantify the relative importance of multiple types of drivers and covariates in explaining observed population densities across 32 low- and middle-income countries over four continents using machine-learning approaches. We find that, while relationships between population densities and geographical factors show some variation between regions, they are generally remarkably consistent, pointing to universal drivers of human population distribution. Here, we find that a set of geographical features relating to the built environment, ecology and topography consistently explain the majority of variability in population distributions at fine spatial scales across the low- and middle-income regions of the world.


Subject(s)
Demography , Decision Trees , Developing Countries , Geography , Humans , Machine Learning , Population Density , Population Dynamics , Poverty , Regression Analysis
4.
Sci Data ; 4: 170089, 2017 07 19.
Article in English | MEDLINE | ID: mdl-28722706

ABSTRACT

The age group composition of populations varies substantially across continents and within countries, and is linked to levels of development, health status and poverty. The subnational variability in the shape of the population pyramid as well as the respective dependency ratio are reflective of the different levels of development of a country and are drivers for a country's economic prospects and health burdens. Whether measured as the ratio between those of working age and those young and old who are dependent upon them, or through separate young and old-age metrics, dependency ratios are often highly heterogeneous between and within countries. Assessments of subnational dependency ratio and age structure patterns have been undertaken for specific countries and across high income regions, but to a lesser extent across the low income regions. In the framework of the WorldPop Project, through the assembly of over 100 million records across 6,389 subnational administrative units, subnational dependency ratio and high resolution gridded age/sex group datasets were produced for 87 countries in Africa and Asia.


Subject(s)
Demography , Africa , Asia , Humans , Socioeconomic Factors
5.
Sci Data ; 3: 160005, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26881418

ABSTRACT

According to UN forecasts, global population will increase to over 8 billion by 2025, with much of this anticipated population growth expected in urban areas. In China, the scale of urbanization has, and continues to be, unprecedented in terms of magnitude and rate of change. Since the late 1970s, the percentage of Chinese living in urban areas increased from ~18% to over 50%. To quantify these patterns spatially we use time-invariant or temporally-explicit data, including census data for 1990, 2000, and 2010 in an ensemble prediction model. Resulting multi-temporal, gridded population datasets are unique in terms of granularity and extent, providing fine-scale (~100 m) patterns of population distribution for mainland China. For consistency purposes, the Tibet Autonomous Region, Taiwan, and the islands in the South China Sea were excluded. The statistical model and considerations for temporally comparable maps are described, along with the resulting datasets. Final, mainland China population maps for 1990, 2000, and 2010 are freely available as products from the WorldPop Project website and the WorldPop Dataverse Repository.


Subject(s)
Population Growth , Urban Population , China , Humans , Models, Statistical
6.
Sci Data ; 2: 150045, 2015.
Article in English | MEDLINE | ID: mdl-26347245

ABSTRACT

The Latin America and the Caribbean region is one of the most urbanized regions in the world, with a total population of around 630 million that is expected to increase by 25% by 2050. In this context, detailed and contemporary datasets accurately describing the distribution of residential population in the region are required for measuring the impacts of population growth, monitoring changes, supporting environmental and health applications, and planning interventions. To support these needs, an open access archive of high-resolution gridded population datasets was created through disaggregation of the most recent official population count data available for 28 countries located in the region. These datasets are described here along with the approach and methods used to create and validate them. For each country, population distribution datasets, having a resolution of 3 arc seconds (approximately 100 m at the equator), were produced for the population count year, as well as for 2010, 2015, and 2020. All these products are available both through the WorldPop Project website and the WorldPop Dataverse Repository.


Subject(s)
Population Density , Population Growth , Caribbean Region , Environment , Health Planning , Humans , Latin America , Urban Population , Urbanization
SELECTION OF CITATIONS
SEARCH DETAIL