Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Eur J Pharm Sci ; 176: 106251, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35788029

ABSTRACT

Treatment of infectious skin conditions resulting from wounds and burns with topical antibiotics is challenging, particularly those caused by methicillin-resistant Staphylococcus aureus bacteria (MRSA). This is due to the formation of bacterial biofilms characterized by antimicrobial resistance. Mupirocin (MP), a widely used topical antibiotic, is active against gram-positive bacteria including MRSA. However, MP suffers from sub-optimal therapeutic efficacy due to its poor water-solubility and the significant rise in MP-resistant S. aureus. In this study, the physico-chemical characteristics of MP were modified through nanocrystallization to improve its therapeutic efficacy for the treatment of skin infections. Mupirocin-nanocrystals (MP-NC) were prepared using a nanoprecipitation technique and optimized using a D-optimal response surface design. The optimization of MP-NC produced ultra-small monodisperse spherical particles with a mean diameter of 70 nm and a polydispersity index of 0.2. The design resulted in two optimal MP-NC formulations that were evaluated by performing series of in vitro, ex vivo, microbiological, and in vivo studies. In-vitro results showed a 10-fold increase in the saturation solubility and a 9-fold increase in the dissolution rate of MP-NC. Ex vivo permeation studies, using pig ears skin, showed a 2-fold increase in the dermal deposition of MP-NC with the highest drug deposition occurring at 500-µm skin depth. Moreover, the optimal MP-NC formulations were lyophilized and incorporated into a 2% w/w cream. Microbiological studies revealed a 16-fold decrease in the minimum inhibitory concentration and the minimum bactericidal concentration of MP-NC. In vivo studies, using a rat excision burn wound model, demonstrated rapid and complete healing of infected burn wounds in rats treated with MP-NC cream in comparison to marketed Avoban ointment. Our results suggest that nanocrystallization of MP may provide an avenue through which higher levels of a topically applied MP can be permeated into the skin to reach relevant infectious areas and exert potential local antibacterial effects.


Subject(s)
Burns , Methicillin-Resistant Staphylococcus aureus , Nanoparticles , Wound Infection , Administration, Topical , Animals , Anti-Bacterial Agents , Burns/drug therapy , Burns/microbiology , Mupirocin/pharmacology , Rats , Swine , Wound Infection/drug therapy , Wound Infection/microbiology
2.
Pharm Dev Technol ; 25(8): 989-998, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32397780

ABSTRACT

Preterm labor is the main cause of death and serious illness of both infants and pregnant women in Africa and worldwide. Parenteral and oral salbutamol sulfate as a B2 antagonist has been used for the treatment of preterm labor. The study aims are to formulate salbutamol sulfate non-invasive vaginal bioadhesive tablets to avoid the side effects of conventional formulations. Full factorial design 41 ×31 ×21 was used for the preparation of 24 vaginal bioadhesive tablet formulations. The independent factors were polymer type (Carbopol 934, HPMC 4000, HEC, and PEG 6000), polymer to drug ratio (1:1, 2:1, and 3:1), and diluent (lactose and mannitol). Vaginal bioadhesive tablets were evaluated for residence time and time required for release 50% of salbutamol sulfate T50% as dependent variables. The formulations were evaluated in terms of drug content, mass variation, hardness, friability, swelling index, residence time, and in-vitro drug release. Results revealed that polymer and diluent types are the most significant factors in both residence time and T50%. A strong positive correlation (0.91) between in-vitro and ex-vivo permeation was observed, which predict the best in-vivo performance of salbutamol vaginal bioadhesive tablet. Thus, salbutamol sulfate vaginal bioadhesive tablets could be a successful remedy for preterm labor.


Subject(s)
Adhesives/chemistry , Albuterol/chemistry , Obstetric Labor, Premature/prevention & control , Sulfates/chemistry , Vaginal Creams, Foams, and Jellies/chemistry , Adhesives/administration & dosage , Albuterol/administration & dosage , Chemistry, Pharmaceutical , Excipients/chemistry , Female , Hardness , Humans , Infant, Newborn , Polymers/chemistry , Pregnancy , Sulfates/administration & dosage , Vaginal Creams, Foams, and Jellies/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL