Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 240: 113982, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38788473

ABSTRACT

Timely in situ imaging and effective treatment are efficient strategies in improving the therapeutic effect and survival rate of tumor patients. In recent years, there has been rapid progress in the development of DNA nanomaterials for tumor in situ imaging and treatment, due to their unsurpassed structural stability, excellent material editability, excellent biocompatibility and individual endocytic pathway. Tetrahedral framework nucleic acids (tFNAs), are a typical example of DNA nanostructures demonstrating superior stability, biocompatibility, cell-entry performance, and flexible drug-loading ability. tFNAs have been shown to be effective in achieving timely tumor in situ imaging and precise treatment. Therefore, the progress in the fabrication, characterization, modification and cellular internalization pathway of tFNAs-based functional systems and their potential in tumor in situ imaging and treatment applications were systematically reviewed in this article. In addition, challenges and future prospects of tFNAs in tumor in situ imaging and treatment as well as potential clinical applications were discussed.


Subject(s)
Nanostructures , Neoplasms , Nucleic Acids , Nanostructures/chemistry , Humans , Neoplasms/drug therapy , Neoplasms/diagnostic imaging , Nucleic Acids/chemistry , Animals , DNA/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology
2.
Int J Biol Macromol ; 262(Pt 1): 129902, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38307426

ABSTRACT

In situ imaging of microRNA (miRNA) content and distribution is valuable for monitoring tumor progression. However, tumor specific in situ imaging remains a challenge due to low miRNA abundance, lack of biological compatibility, and poor specificity. In this study, we designed a DNA tetrahedral framework complex with hairpins (DTF-HPAP) consisting of an apurinic/apyrimidinic site (AP site) that could be specifically recognized and cleaved by apurinic/apyrimidinic endonuclease 1 (APE1). Efficient and specific in situ imaging of miR-21 in tumors was thus achieved through catalytic hairpin assembly (CHA) reaction. In this study, DTF-HPAP was successfully constructed to trigger the cumulative amplification of fluorescence signal in situ. The specificity, sensitivity and serum stability of DTF-HPAP were verified in vitro, and DTF-HPAP could be easily taken up by cells, acting as a biosensor to detect tumors in mice. Furthermore, we verified the ability of DTF-HPAP to specifically image miR-21 in tumors, and demonstrated its capability for tumor-specific imaging in clinical samples.


Subject(s)
Biosensing Techniques , MicroRNAs , Neoplasms , Mice , Animals , MicroRNAs/genetics , Endonucleases , Catalysis , Biosensing Techniques/methods
5.
J Thorac Dis ; 13(3): 2080, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33841999

ABSTRACT

[This retracts the article DOI: 10.21037/jtd.2018.11.37.].

7.
J Thorac Dis ; 10(12): 6578-6584, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30746203

ABSTRACT

BACKGROUND: Based on CT image data, a computational fluid dynamics (CFD) model of the aortic arch was established. We aimed to investigate the hemodynamic features associated with end-to-side anastomosis (ESA) surgery for coarctation of the aorta (CoA) by CFD model. METHODS: The data of enhanced CT two-dimensional medical images obtained through clinical practice were processed using medical image post-processing software. The three-dimensional model of the aortic arch was obtained through the geometric model and boundary condition. This was subsequently transformed into a CAD model, which can be used for simulation calculation. RESULTS: The CFD model accurately reflected the shape of the aortic arch, and produced the hemodynamic results before and after ESA for CoA. CONCLUSIONS: The CFD model provides a virtual execution platform for the scientific research of aortic arch disease and will be helpful to evaluate the operation plan, even to determine the best surgical procedure. Hemodynamic analysis may be helpful to evaluate the therapeutic effects of other aortic diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...