Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 2084, 2023 04 12.
Article in English | MEDLINE | ID: mdl-37045847

ABSTRACT

Clearance of neurotoxic brain proteins via cerebrospinal fluid (CSF) to blood has recently emerged to be crucial, and plasma biomarkers of neurodegeneration were newly introduced to predict neurological disease. This study examines in 106 individuals with neurological disorders associations between plasma biomarkers [40 and 42 amino acid-long amyloid-ß (Aß40 and Aß42), total-tau, glial fibrillary acidic protein (GFAP), and neurofilament light (NfL)] and magnetic resonance imaging measures of CSF-mediated clearance from brain via extra-vascular pathways (proxy of glymphatic function) and CSF-to-blood clearance variables from pharmacokinetic modeling (proxy of meningeal lymphatic egress). We also examine how biomarkers vary during daytime and associate with subjective sleep quality. Plasma concentrations of neurodegeneration markers associate with indices of glymphatic and meningeal lymphatic functions in individual- and disease-specific manners, vary during daytime, but are unaffected by sleep quality. The results suggest that plasma concentrations of neurodegeneration biomarkers associate with measures of glymphatic and meningeal lymphatic function.


Subject(s)
Alzheimer Disease , Nervous System Diseases , Humans , Amyloid beta-Peptides/cerebrospinal fluid , Brain/diagnostic imaging , Biomarkers , tau Proteins/cerebrospinal fluid , Alzheimer Disease/cerebrospinal fluid , Neurofilament Proteins
2.
Fluids Barriers CNS ; 19(1): 55, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35778719

ABSTRACT

BACKGROUND: Quantitative measurements of cerebrospinal fluid to blood clearance has previously not been established for neurological diseases. Possibly, variability in cerebrospinal fluid clearance may affect the underlying disease process and may possibly be a source of under- or over-dosage of intrathecally administered drugs. The aim of this study was to characterize the cerebrospinal fluid to blood clearance of the intrathecally administered magnetic resonance imaging contrast agent gadobutrol (Gadovist, Bayer Pharma AG, GE). For this, we established a population pharmacokinetic model, hypothesizing that cerebrospinal fluid to blood clearance differs between cerebrospinal fluid diseases. METHODS: Gadobutrol served as a surrogate tracer for extra-vascular pathways taken by several brain metabolites and drugs in cerebrospinal fluid. We estimated cerebrospinal fluid to blood clearance in patients with different cerebrospinal fluid disorders, i.e. symptomatic pineal and arachnoid cysts, as well as tentative spontaneous intracranial hypotension due to cerebrospinal fluid leakage, idiopathic intracranial hypertension, or different types of hydrocephalus (idiopathic normal pressure hydrocephalus, communicating- and non-communicating hydrocephalus). Individuals with no verified cerebrospinal fluid disturbance at clinical work-up were denoted references. RESULTS: Population pharmacokinetic modelling based on 1,140 blood samples from 161 individuals revealed marked inter-individual variability in pharmacokinetic profiles, including differences in absorption half-life (time to 50% of tracer absorbed from cerebrospinal fluid to blood), time to maximum concentration in blood and the maximum concentration in blood as well as the area under the plasma concentration time curve from zero to infinity. In addition, the different disease categories of cerebrospinal fluid diseases demonstrated different profiles. CONCLUSIONS: The present observations of considerable variation in cerebrospinal fluid to blood clearance between individuals in general and across neurological diseases, may suggest that defining cerebrospinal fluid to blood clearance can become a useful diagnostic adjunct for work-up of cerebrospinal fluid disorders. We also suggest that it may become useful for assessing clearance capacity of endogenous brain metabolites from cerebrospinal fluid, as well as measuring individual cerebrospinal fluid to blood clearance of intrathecal drugs.


Subject(s)
Hydrocephalus , Nervous System Diseases , Contrast Media , Humans , Kinetics , Magnetic Resonance Imaging/methods , Prospective Studies
3.
Br J Clin Pharmacol ; 88(9): 4121-4133, 2022 09.
Article in English | MEDLINE | ID: mdl-35404513

ABSTRACT

AIM: Roux-en-Y gastric bypass (RYGB) may influence drug disposition due to surgery-induced gastrointestinal alterations and/or subsequent weight loss. The objective was to compare short- and long-term effects of RYGB and diet on the metabolic ratios of paraxanthine/caffeine (cytochrome P450 [CYP] 1A2 activity), 5-hydroxyomeprazole/omeprazole (CYP2C19 activity) and losartan/losartan carboxylic acid (CYP2C9 activity), and cross-sectionally compare these CYP-activities with normal-to-overweight controls. METHODS: This trial included patients with severe obesity preparing for RYGB (n = 40) or diet-induced (n = 41) weight loss, and controls (n = 18). Both weight loss groups underwent a 3-week low-energy diet (<1200 kcal/day, weeks 0-3) followed by a 6-week very-low-energy diet or RYGB (both <800 kcal/day, weeks 3-9). Follow-up time was 2 years, with four pharmacokinetic investigations. RESULTS: Mean ± SD weight loss from baseline was similar in the RYGB-group (13 ± 2.4%) and the diet group (10.5 ± 3.9%) at week 9, but differed at year 2 (RYGB -30 ± 6.9%, diet -3.1 ± 6.3%). From weeks 0 to 3, mean (95% confidence interval [CI]) CYP2C19 activity similarly increased in both groups (RYGB 43% [16, 55], diet 48% [22, 60]). Mean CYP2C19 activity increased by 30% (2.6, 43) after RYGB (weeks 3-9), but not in the diet-group (between-group difference -0.30 [-0.63, 0.03]). CYP2C19 activity remained elevated in the RYGB group at year 2. Baseline CYP2C19 activity was 2.7-fold higher in controls compared with patients with obesity, whereas no difference was observed in CYP1A2 and CYP2C9 activities. CONCLUSION: Our findings suggest that CYP2C19 activity is lower in patients with obesity and increases following weight loss. This may be clinically relevant for drug dosing. No clinically significant effect on CYP1A2 and CYP2C9 activities was observed.


Subject(s)
Gastric Bypass , Obesity, Morbid , Caloric Restriction , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP2C19/genetics , Cytochrome P-450 CYP2C9 , Humans , Obesity/surgery , Obesity, Morbid/surgery , Weight Loss
4.
JCI Insight ; 6(9)2021 05 10.
Article in English | MEDLINE | ID: mdl-33822769

ABSTRACT

BACKGROUNDMethodology for estimation of cerebrospinal fluid (CSF) tracer clearance could have wide clinical application in predicting excretion of intrathecal drugs and metabolic solutes from brain metabolism and for diagnostic workup of CSF disturbances.METHODSThe MRI contrast agent gadobutrol (Gadovist) was used as a CSF tracer and injected into the lumbar CSF. Gadobutrol is contained outside blood vessels of the CNS and is eliminated along extravascular pathways, analogous to many CNS metabolites and intrathecal drugs. Tracer enrichment was verified and assessed in CSF by MRI at the level of the cisterna magna in parallel with obtaining blood samples through 48 hours.RESULTSIn a reference patient cohort (n = 29), both enrichment within CSF and blood coincided in time. Blood concentration profiles of gadobutrol through 48 hours varied between patients diagnosed with CSF leakage (n = 4), idiopathic normal pressure hydrocephalus dementia (n = 7), pineal cysts (n = 8), and idiopathic intracranial hypertension (n = 4).CONCLUSIONAssessment of CSF tracer clearance is clinically feasible and may provide a way to predict extravascular clearance of intrathecal drugs and endogenous metabolites from the CNS. The peak concentration in blood (at about 10 hours) was preceded by far peak tracer enhancement at MRI in extracranial lymphatic structures (at about 24 hours), as shown in previous studies, indicating a major role of the spinal canal in CSF clearance capacity.FUNDINGThe work was supported by the Department of Neurosurgery, Oslo University Hospital; the Norwegian Institute for Air Research; and the University of Oslo.


Subject(s)
Central Nervous System Cysts/metabolism , Cerebrospinal Fluid Leak/metabolism , Contrast Media/pharmacokinetics , Glymphatic System/metabolism , Hydrocephalus, Normal Pressure/metabolism , Organometallic Compounds/pharmacokinetics , Pseudotumor Cerebri/metabolism , Adult , Aged , Central Nervous System Cysts/diagnostic imaging , Cerebrospinal Fluid Leak/diagnostic imaging , Female , Humans , Hydrocephalus, Normal Pressure/diagnostic imaging , Injections, Spinal , Magnetic Resonance Imaging , Male , Metabolic Clearance Rate , Middle Aged , Pineal Gland/diagnostic imaging , Pseudotumor Cerebri/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...